Comparative Histological Study of the Possible Protective Effect of Valsartan Versus Dexamethasone On Cyclophosphamide-Induced Lung Injury in Adult Male Albino Rat

Document Type : Original articles


Department of histology, Faculty of Medicine, Beni-Suef University,Egypt


Introduction: Interstitial lung diseases are groups of chronic lung diseases characterized by inflammation and fibrosis.  Aim of work: The present study was performed to evaluate the possible protective effect of valsartan versus dexamethasone on cyclophosphamide-induced lung injury in adult male albino rat. Material and Methods: Thirty male albino Rats were divided into 6 groups; 5 rats each: group I (Control), group II (Cyclophosphamide), group III (Valsartan), group IV (Dexamethasone), group V (Dexamethasone & Cyclophosphamide), and group VI (Valsartan and Cyclophosphamide). Lung specimens were taken on the 6th day of experiment. Specimens were subjected to histological (Hematoxylin and Eosin, Periodic Acid-Schiff, and Masson's trichrome) and immunohistochemical (Alpha smooth muscle actin, Clsuter of Differentiation 86, and inducible Nitric Oxide Synthase) studies. Also, morphometric studies and statistical analysis were done. Results: Features of acute lung injury appeared in group II as thickening of interalveolar septa, narrowing of alveoli, and cellular infiltrations. There were significant increases in the mean area percentage of collagen fibers, inducible Nitric Oxide Synthase and Alpha smooth muscle actin, besides significantly increased number of Periodic Acid-Schiff -positive goblet cells and alveolar macrophages in anti- Clsuter of Differentiation 86 immuostained sections, and thickness of interalveolar septa. Sections in group V and group VI demonstrated that lung tissue restored normal histological and immunohistochemical results, compared to group II. There was a significant decrease in mean area percentage of collagen fibers, inducible Nitric Oxide Synthase and Alpha smooth muscle actin, number of Periodic Acid-Schiff -positive goblet cells and alveolar macrophages in anti- Clsuter of Differentiation 86 immuostained sections, and thickness of interalveolar septa as compared to group II.  Conclusion: valsartan and dexamethasone possess protective effects against cyclophosphamide induced lung toxicity with the upper hand was to valsartan.


Main Subjects

  1. Qian, P., hong Peng,, & Ye, X. (2019). Interstitial pneumonia induced by cyclophosphamide: A case report and review of the literature. Respiratory medicine case reports, 26, 212-214.
  2. John, A. E., Joseph, C., Jenkins, G., & Tatler, A. L. (2021). COVID‐19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts. Immunological Reviews, 302(1), 228-240.
  3. Siddiqui, N., Husain, A., Chaudhry, L., Alam, M. S., Mitra, M., & Bhasin, P. S. (2011). Pharmacological and pharmaceutical profile of valsartan: a review. Journal of Applied Pharmaceutical Science, (Issue), 12-19.
  4. Al-Harbi, N. O., Imam, F., Al-Harbi, M. M., Ansari, M. A., Zoheir, K. M., Korashy, H. M. & Ahmad, S. F. (2016). Dexamethasone attenuates LPS-induced acute lung injury through inhibition of NF-κB, COX-2, and pro-inflammatory mediators. Immunological Investigations, 45(4), 349-369.
  5. Abdel-Latif, G. A., Elwahab, A. H. A., Hasan, R. A., ElMongy, N. F., Ramzy, M. M., Louka, M. L., & Schaalan, M. F. (2020). A novel protective role of sacubitril/valsartan in cyclophosphamide induced lung injury in rats: impact of miRNA-150-3p on NF-κB/MAPK signaling trajectories. Scientific reports, 10(1), 1-17.
  6. Kiernan, John. (2015). Histological and histochemical methods. Scion publishing ltd, fifth edition 155-170.
  7. Bancroft, J. D. S., Layton, C., &. Suvarna, K (Eds.). (2018). Bancroft's theory and practice of histological techniques E-Book. Elsevier health sciences 301-319.
  8. Gunnar F. Nordberg, Bruce A. Fowler, Monica Nordberg and Lars T. Friberg. (2007): Handbook on the Toxicology of Metals. Science Direct 6th edition , pp 39-64
  9. Emsley, R., Dunn,, & White, I. R. (2010). Mediation and moderation of treatment effects in randomised controlled trials of complex interventions. Statistical methods in medical research, 19(3), 237-270.
  10. Tripathi, D. N. & Jena, G. B. (2008). Astaxanthin inhibits cytotoxic and genotoxic efects of cyclophosphamide in mice germ cells. Toxicol‑ ogy 248, 96–103.
  11. El-Sheikh, A. A., Morsy, M. A. & Okasha, A. M. (2017). Inhibition of NF-kappaB/TNF-alpha pathway may be involved in the protective efect of resveratrol against cyclophosphamide-induced multi-organ toxicity. Immunopharmacol. Immunotoxicol. 39, 180–187.
  12. El-Kashef, D. H. (2018). Role of venlafaxine in prevention of cyclophosphamide-induced lung toxicity and airway hyperactivity in rats. Environmental Toxicology and Pharmacology, 58, 70-76.
  13. Paulsen, C., Truong, T. H., Garcia, F. J., Homann, A., Gupta, V., Leonard, S. E., & Carroll, K. S. (2012). Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nature chemical biology, 8(1), 57-64.
  14. Li, L., Li, Q., Wei, L., Wang, Z., Ma, W., Liu, F., & Qian, Y. (2019). Dexamethasone combined with berberine is an effective therapy for bleomycin‑induced pulmonary fibrosis in rats. Experimental and Therapeutic Medicine, 18(4), 2385-2392.
  15. Schiller, H., Fernandez, I. E., Burgstaller, G., Schaab, C., Scheltema, R. A., Schwarzmayr, T., & Mann, M. (2015). Time‐and compartment‐resolved proteome profiling of the extracellular niche in lung injury and repair. Molecular systems biology, 11(7), 819.
  16. Liu, T., De Los Santos, F. G., & Phan, S. H. (2017). The bleomycin model of pulmonary fibrosis. Fibrosis: Methods and Protocols, 27-42.
  17. Carthy, M. (2018). TGFβ signaling and the control of myofibroblast differentiation: Implications for chronic inflammatory disorders. Journal of cellular physiology, 233(1), 98-106.
  18. Knudsen, L., Ruppert, C., & Ochs, M. (2017). Tissue remodelling in pulmonary fibrosis. Cell and Tissue Research, 367, 607-626.
  19. Penke, L. R., & Peters-Golden, M. (2019). Molecular determinants of mesenchymal cell activation in fibroproliferative diseases. Cellular and Molecular Life Sciences, 76, 4179-4201.
  20. Cameli, P., Carleo, A., Bergantini, L., Landi, C., Prasse, A., & Bargagli, E. (2020). Oxidant/antioxidant disequilibrium in idiopathic pulmonary fibrosis pathogenesis. Inflammation, 43, 1-7.
  21. Vavrinec, P., H Henning, R., W Landheer, S., Wang, Y., E Deelman, L., PE van Dokkum, R., & Buikema, H. (2014). Vildagliptin restores renal myogenic function and attenuates renal sclerosis independently of effects on blood glucose or proteinuria in Zucker diabetic fatty rat. Current Vascular Pharmacology, 12(6), 836-844.
  22. Rasooli, R., Pourgholamhosein, F., Kamali, Y., Nabipour, F., & Mandegary, A. (2018). Combination therapy with pirfenidone plus prednisolone ameliorates paraquat-induced pulmonary fibrosis. Inflammation, 41, 134-142.
  23. Kakugawa, T., Mukae, H., Hayashi, T., Ishii, H., Abe, K., Fujii, T., ... & Kohno, S. (2004). Pirfenidone attenuates expression of HSP47 in murine bleomycin-induced pulmonary fibrosis. European Respiratory Journal, 24(1), 57-65.
  24. Ismail,, Hossain, M., Tanu, A. R., & Shekhar, H. U. (2015). Effect of spirulina intervention on oxidative stress, antioxidant status, and lipid profile in chronic obstructive pulmonary disease patients. BioMed research international, 201-215.
  25. Bellaye, P., Yanagihara, T., Granton, E., Sato, S., Shimbori, C., Upagupta, C., & Kolb, M. (2018). Macitentan reduces progression of TGF-β1-induced pulmonary fibrosis and pulmonary hypertension. European Respiratory Journal, 52(2) 134-150.
  26. Chen, J. F., Ni, F., Pan, M. M., Liu, H., Xu, M., Zhang, M. H., & Liu, B. C. (2013). Pirfenidone inhibits macrophage infiltration in 5/6 nephrectomized rats. American Journal of Physiology-Renal Physiology, 304(6), F676-F685.
  27. Li, V. C. (2003). On engineered cementitious composites (ECC) a review of the material and its applications. Journal of advanced concrete technology, 1(3), 215-230.
  28. Judge and(2015)."Neprilysin inhibition in chronic kidney disease." Nephrology Dialysis Transplantation 30.5 :738-743.
  29. Salama RM, Abd Elwahab AH, Abd-Elgalil MM, Elmongy NF, Schaalan MF. (2020) .LCZ696 (sacubitril/valsartan) protects against cyclophosphamide-induced testicular toxicity in rats: Role of neprilysin inhibition and lncRNA TUG1 in ameliorating apoptosis. Toxicology 437:152439-152443.
  30. Paragliola, M., Papi, G., Pontecorvi, A., & Corsello, S. M. (2017). Treatment with synthetic glucocorticoids and the hypothalamus-pituitary-adrenal axis. International journal of molecular sciences, 18(10), 2201-2209.