Possible Protective Effect of Co-administration of Hydrogen Sulfide and Exosomes versus Hydrogen Sulfide Preconditioned Exosomes on Hepatic Ischemia Reperfusion Injury in Adult Male Rat Model: Biochemical, Histological and Immunohistochemical Study

Document Type : Original articles

Authors

Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt

Abstract

Background: Liver ischemia/reperfusion (I/R) commonly happens within liver surgical procedures as well as transplantation. It causes postoperative liver dysfunction, and poor patient outcome. Emerging strategies assume that efficacy of mesenchymal stem cells-exosomes (MSCs-EXOs) is dependent on status of MSCs extracellular environment. Hydrogen sulfide (H2S) regulates several cellular signaling pathways and exerts a protective effect in various disorders. Aim of the work: Comparing the protective influence of co-administration of H2S and exosomes versus H2S-preconditioned exosomes on liver I/R injury adult male rat model. Materials and Methods: Fifty adult male rats were categorized to donor, control, liver I/R, recovery, H2S + EXOs, and H2S-preconditioned EXOs groups. At the end of experiment, biochemical analysis [for liver enzymes, nuclear factor kappa-B (NF-κB) and superoxide dismutase (SOD)], histological and immunohistochemical studies [for high-mobility group box 1 (HMGB1), nuclear factor-erythroid 2-related factor 2 (Nrf2), as well as heme oxygenase-1 (HO-1)], and statistical analysis were done. Results: Ischemia/reperfusion group recorded significant rise in hepatic enzymes, NF-κB level, HMGB1 immunoreactivity, and decrease in SOD level, Nrf2 and HO-1 immunoreactivity. In addition to the presence of foci of disorganized hepatocytes, necrotic cells, apoptosis, and periportal inflammatory infiltration. Recovery showed insignificant improvement in formerly mentioned results. While the use of H2S + EXOs, or H2S-precoordinated EXOs clearly improved inflammation, antioxidant parameters, and hepatocellular injury. Conclusion: H2S + EXOs in addition to H2S-precoordinated EXOs possessed hepatoprotective impacts against I/R injury in the liver. Whereas H2S preconditioning of MSCs could augment the protective impact of MSC-EXOs.

Keywords

Main Subjects


  1. Elbaset M.A., Arafa E.S.A., Sherbiny G.A.E., Bakky M.S.A., Elgendy A.N.A.M., Quercetin modulates iNOS: eNOS and NOSTRIN expressions and attenuates oxidative stress in warm hepatic ischemia-reperfusion injury in rats, Beni-Suef Univ. J. Basic Appl. Sci.2015; 4: 246–255.
  2. Ali JM, Davies SE, Brais RJ, Randle LV, Klinck JR, Allison ME, Chen Y, Pasea L, Harper SF, Pettigrew GJ. Analysis of ischemia/reperfusion injury in time-zero biopsies predicts liver allograft outcomes. Liver Transpl. 2015; 21:487-499.
  3. Yamada N, Karasawa T, Wakiya T, Sadatomo A, Ito H, Kamata R, Watanabe S, Komada T, Kimura H, Sanada Y, Sakuma Y, Mizuta K, Ohno N, Sata N, Takahashi M. Iron overload as a risk factor for hepatic ischemia‐reperfusion injury in liver transplantation: Potential role of ferroptosis. American Journal of Transplantation.2020; 20:1606-1618.
  4. Guan Y, Yao W, Yi K, Zheng C, Lv S, Tao Y, Hei Z, Li M. Nanotheranostics for the Management of Hepatic Ischemia‐Reperfusion Injury. Small. 2021;17: e2007727. 
  5. Bardallo RG, Panisello‐Roselló A, Sanchez‐Nuno S, Alva N, Roselló‐Catafau J, Carbonell T. Nrf2 and oxidative stress in liver ischemia/reperfusion injury. The FEBS journal; 2022; 289: 5463–5479.
  6. Liu Y, Yang L, Tao K, Vizcaychipi MP, Lloyd DM, Sun X, Irwin MG, Ma D, Yu W. Protective effects of hydrogen enriched saline on liver ischemia reperfusion injury by reducing oxidative stress and HMGB1 release. BMC Gastroenterol. 2014; 14:12.
  7. Yang X, Yao W, Shi H, Liu H, Li Y, Gao Y, Liu R, Xu L. Paeoniflorin protects Schwann cells against high glucose induced oxidative injury by activating Nrf2/ARE pathway and inhibiting apoptosis. J Ethnopharmacol. 2016; 185:361–369
  8. Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment. Pharmacol Rep. 2017; 69:393-402.
  9. Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. Elsevier. 2017; 1863:585–97.
  10. Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol. 2018; 17:297–314.
  11. Bao L, Li J, Zha D, Zhang L, Gao P, Yao T, Wu X. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-kB pathways. Int Immunopharmacol.2018; 54:245–253
  12. Zhou Y, Tan Z, Huang H, Zeng Y, Chen S, Wei J, Huang G, Qian C, Yuan G, He S. Baicalein pre‑treatment alleviates hepatic ischemia/reperfusion injury in mice by regulating the Nrf2/ARE pathway. Experimental and Therapeutic Medicine.2021; 22: 1-9.
  13. Bai Y, Han YD, Yan XL, Ren J, Zeng Q, Li XD, Pei XT, Han Y: Adipose mesenchymal stem cell‑derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia‑reperfusion injury. Biochem Biophys Res Commun.2018; 500: 310‑317.
  14. Zhang Y, Han F, Gu L, Ji P, Yang X, Liu M, Tao K, Hu D: Adipose mesenchymal stem cell exosomes promote wound healing through accelerated keratinocyte migration and proliferation by activating the AKT/HIF‑1α axis. J Mol Histol.2020; 51: 375‑383.
  15. Kugeratski FG, Kalluri R: Exosomes as mediators of immune regulation and immunotherapy in cancer. FEBS J.2021; 288: 10‑35.
  16. Gnecchi M, Danieli P, Malpasso G, Ciuffreda MC. Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods Mol Biol. 2016; 1416:123.
  17. Rager TM, Olson JK, Zhou Y. Wang Y, Besner GE. Exosomes secreted from bone marrow-derived mesenchymal stem cells protect the intestines from experimental necrotizing enterocolitis. J Pediatr Surg. 2016; 51:942–947.
  18. Gurunathan S, Kang M-H, Jeyaraj M, Qasim M, Kim J-H. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells. 2019; 8:307. 
  19. Ocansey DKW, Pei B, Yan Y, Qian H, Zhang X, Xu W, Mao F. Improved therapeutics of modified mesenchymal stem cells: an update. J Transl Med. 2020; 18:42.
  20. Hu C, Li L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med. 2018; 22:1428-1442.
  21. Xiao Q, Ying J, Xiang L, Zhang C. The biologic effect of hydrogen sulfide and its function in various diseases. Medicine. 2018; 97: e13065.
  22. Zheng J, Zhao T, Yuan Y, Hu N, Tang X. Hydrogen sulfide (H2S) attenuates uranium-induced acute nephrotoxicity through oxidative stress and inflammatory response via Nrf2-NF-kappa B pathways. Chem. Biol. Interact.2015; 242: 353–362.
  23. Zhang Q, Liu S, Li T, Yuan L, Liu H, Wang X, Wang F, Wang S, Hao A, Liu D, Wang Z. Preconditioning of bone marrow mesenchymal stem cells with hydrogen sulfide improves their therapeutic potential. Oncotarget. 2016; 7:58089-58104.
  24. Azarbarz N, Seifabadi ZS, Moaiedi MZ, Mansouri E. Assessment of the effect of sodium hydrogen sulfide (hydrogen sulfide donor) on cisplatin-induced testicular toxicity in rats. Environmental Science and Pollution Research.2020; 27:8119-8128
  25. Yuan O, Lin C, Wagner J, Anderson J, Archard J, Deng P, Halmai J, Bauer G, Fink K, Fury B, Perotti N, Walker J, Pollock K, Apperson M, Butters J, Belafsky P, Farwell D, Kuhn M, Nolta J, Anderson J. Exosomes Derived from Human Primed Mesenchymal Stem Cells Induce Mitosis and Potentiate Growth Factor Secretion. Stem Cells and Development. 2019; 28: 398-409.
  26. Wang Y, Wang R, Li Z, Wang X, Qiao X, Ma T, Jiang Z, Huang L. H2S treatment improves protective effect of MSC-derived exosomes upon of renal ischemia/reperfusion fibrosis by suppressing inflammatory signaling of TGF-β and NF-kB as well as ROS generation. Archives of Medical Science.2021;1-36.
  27. Ibrahim MA, Abdelzaher WY, Ibrahim YF, Ahmed AF, Welson NN, Al-Rashed S, Batiha GE, Abdel-Aziz AM. Diacerein protects rats with liver ischemia/reperfusion damage: Down-regulation of TLR4/ NFκ-B signaling pathway. Biomed Pharmacother. 2020; 134: 111063.
  28. Chen L, Ma K, Fan H, Wang X, Cao T. Exogenous hydrogen sulfide protects against hepatic ischemia/reperfusion injury by inhibiting endoplasmic reticulum stress and cell apoptosis. Experimental and Therapeutic Medicine.2021; 22: 1-7
  29. Czigany Z, Hata K, Lai W, Schwandt T, Yamamoto Y, Uemoto S, Tolba R. A Dual Protective Effect of Intestinal Remote Ischemic Conditioning in a Rat Model of Total Hepatic Ischemia. Journal of Clinical Medicine 2019; 8: 1-16.
  30. Zhang Y, Li Y, Wang Q, Zheng D, Feng X, Zhao W, Cai L, Zhang Q, Xu H, Fu H. Attenuation of hepatic ischemia‑reperfusion injury by adipose stem cell‑derived exosome treatment via ERK1/2 and GSK‑3β signaling pathways. Int J Mol Med. 2022; 49:13.
  31. González-Cubero E, González-Fernández ML, Gutiérrez-Velasco L, Navarro-Ramírez E, Villar-Suárez V. Isolation and characterization of exosomes from adipose tissue-derived mesenchymal stem cells. J Anat. 2021; 238: 1203-1217.
  32. Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, Kwong A, Mitsialis SA, Kourembanas S. Mesenchymal Stromal Cell Exosomes Ameliorate Experimental Bronchopulmonary Dysplasia and Restore Lung Function through Macrophage Immunomodulation. Am J Respir Crit Care Med.2018; 197: 104-116.
  33. Hajian R, DeCastro J, Parkinson J, Kane A, Camelo AFR, Chou PP, Yang J, Wong N, Hernandez EDO, Goldsmith B, Conboy I, Aran K. Rapid and electronic identification and quantification of age‐specific circulating exosomes via biologically activated graphene transistors. Advanced Biology.2021; 5: 2000594
  34. Zou W, Yang Y, Gu Y, Zhu P, Zhang M, Cheng Z, Liu X, Yu Y, Peng X. Repeated Blood Collection from Tail Vein of Non-Anesthetized Rats with a Vacuum Blood Collection System. Journal of visualised experiment 2017; 130: 1-6.
  35. Lima NKS, Farias WRA, Cirilo MAS, Oliveira AG, Farias JS, Aires RS, Muzi-Filho H, Paixão ADO, Vieira LD. Renal ischemia-reperfusion leads to hypertension and changes in proximal tubule Na+ transport and renin-angiotensin-aldosterone system: Role of NADPH oxidase. Life Sci. 2021; 266:118879
  36. Kükner A, Soyler G, Toros P, Dede G, Meriçli F, Işık S, Edebal O, Özoğul C. Protective effect of Coriandrum sativum extract against inflammation and apoptosis in liver ischemia /reperfusion injury. Folia Morphologica.2021; 80: 363-371
  37. Yücel A, Aydogan M, Ucar M, Sarıcı K, Karaaslan M. Effects of Apocynin on Liver Ischemia-Reperfusion Injury in Rats. Transplantation Proceedings.2019; 51: 1180-1183
  38. Suvarna K, Layton C, Bancroft J. The haematoxylins and eosin Connective and mesenchymal tissue with their stains & Immunohistochemical and immunofluorescent techniques. In Bancroft's Theory and Practice of Histological Techniques (Eighth Edition), Elsevier, 2019, pp: 126-138, 153-175 & 337-394
  39. Dong L, Chen F, Xu M, Yao L, Zhang Y, Zhuang Y. Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-кB signaling pathway. American journal of translation research.2018; 10: 1273–1283.
  40. Yu K, Zhang J, Cao Z, Ji Q, Han Y, Song M, Shao B, Li Y. Lycopene attenuates AFB1-induced renal injury with the activation of the Nrf2 antioxidant signaling pathway in mice. Food and Function.2018; 9: 6427-6434.
  41. Zhang A, Suzuki T, Adachi S, Naganuma E, Suzuki N, Hosoya T, Itoh K, Sporn MB, Yamamoto M. Distinct Regulations of HO-1 Gene Expression for Stress Response and Substrate Induction. Mol Cell Biol.2021; 41 :0023621
  42. Emsley R, Dunn G, White IR. Mediation and moderation of treatment effects in randomized controlled trials of complex interventions. Statistical Methods in Medical Research.2010; 19: 237-270
  43. Ito Y, Hosono K, Amano H. Responses of hepatic sinusoidal cells to liver ischemia-reperfusion injury. Front Cell Dev Biol.2023; 11:1171317.
  44. Piardi T, Lhuaire M, Memeo R, Pessaux P, Kianmanesh R, Sommacale D. Laparoscopic Pringle maneuver: how we do it? Hepatobiliary Surg Nutr.2016; 5: 345-349.
  45. Mard SA, Akbari G, Dianat M, Mansouri E. Protective effects of crocin and zinc sulfate on hepatic ischemia-reperfusion injury in rats: a comparative experimental model study. Biomed Pharmacother.2017; 96:48–55.
  46. Olthof PB, van Golen RF, Meijer B, van Beek AA, Bennink RJ, Verheij J, van Gulik TM, Heger M. Warm ischemia time-dependent variation in liver damage, inflammation, and function in hepatic ischemia/reperfusion injury. Biochim Biophys Acta Mol Basis Dis.2017; 1863: 375-385.
  47. Li Z, Lu S, Qian B, Meng Z, Zhou Y, Chen D, Chen B, Yang G, Ma Y. Sex differences in hepatic ischemia‒reperfusion injury: a cross-sectional study. Sci Rep.2023; 13: 5724.
  48. Fels JA, Manfredi G. Sex differences in ischemia/reperfusion injury: The role of mitochondrial permeability transition. Neurochem.2019; 44: 2336–2345.
  49. Nakanuma S, Tajima H, Takamura H, Sakai S, Gabata R, Okazaki M, Shinbashi H, Ohbatake Y, Makino I, Hayashi H, Miyashita T, Fushida S, Ohta T. Pretreatment with a Phosphodiesterase-3 Inhibitor, Milrinone, Reduces Hepatic Ischemia-Reperfusion Injury, Minimizing Pericentral Zone-Based Liver and Small Intestinal Injury in Rats. Ann Transplant.2020; 25: 922306.
  50. Kolovrat M, Gojkovic S, Krezic I, Malekinusic D, Vrdoljak B, Kasnik Kovac K, Kralj T, Drmic D, Barisic I, Horvat Pavlov K, Petrovic A, Duzel A, Knezevic M, Mirkovic I, Kokot A, Boban Blagaic A, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 resolves Pringle maneuver in rats, both ischemia and reperfusion. World J Hepatol. 2020;12: 184-206.
  51. Vetrugno L, Cherchi V, Lorenzin D, De Lorenzo F, Ventin M, Zanini V, Terrosu G, Risaliti A, Baccarani U, Bove T. The Challenging Management of an Intracardiac Thrombus in a Liver Transplant Patient at the Reperfusion Phase: A Case Report and Brief Literature Review. Transplant Direct.2021; 7: 746.
  52. Gomes HM, Serigiolle LC, Rodrigues DA, Lopes CM, Studart Sdo V, Leme PL. Unfeasible experimental model of normothermic hepatic ischemia and reperfusion in rats using the Pringle maneuver. Arq Bras Cir Dig. 2014;27: 196-200.
  53. Liu B, Ma ZY, Wu G, Qian JM. Butyrate protects rats from hepatic ischemia/reperfusion injury. Int J Clin Exp Med. 2015,8: 5406-5413.
  54. Chinnappan R, Mir TA, Alsalameh S, Makhzoum T, Adeeb S, Al-Kattan K, Yaqinuddin A. Aptasensors Are Conjectured as Promising ALT and AST Diagnostic Tools for the Early Diagnosis of Acute Liver Injury. Life.2023; 13: 1273.
  55. Morsy MA, Abdel-Gaber SA, Rifaai RA, Mohammed MM, Nair AB, Abdelzaher WY. Protective mechanisms of telmisartan against hepatic ischemia/reperfusion injury in rats may involve PPARγ-induced TLR4/NF-κB suppression. Biomed Pharmacother.2021; 145: 112374.
  56. van Alem CMA, Boonstra M, Prins J, Bezhaeva T, van Essen MF, Ruben JM, Vahrmeijer AL, van der Veer EP, de Fijter JW, Reinders ME, Meijer O, Metselaar JM, van Kooten C, Rotmans JI. Local delivery of liposomal prednisolone leads to an anti-inflammatory profile in renal ischaemia-reperfusion injury in the rat. Nephrol Dial Transplant. 2018; 33:44–53.
  57. Teodoro JS, Varela AT, Duarte FV, Gomes AP, Palmeira CM, Rolo AP. Indirubin and NAD (+) prevent mitochondrial ischaemia/reperfusion damage in fatty livers. Eur J Clin Invest. 2018; 48: e12932.
  58. Toyoda T, Tosaka S, Tosaka R, Maekawa T, Cho S, Eguchi S, Nakashima M, Sumikawa K. Milrinone-induced postconditioning reduces hepatic ischemia-reperfusion injury in rats: the roles of phosphatidylinositol 3-kinase and nitric oxide. J Surg Res. 2014; 186:446-51.
  59. Mitchell JP, Carmody RJ. NF-κB and the Transcriptional Control of Inflammation. Int Rev Cell Mol Biol.2018; 335:41-84.
  60. Awad AS, Elariny HA, Sallam AS. Colchicine attenuates renal ischemia-reperfusion-induced liver damage: implication of TLR4/NF-κB, TGF-β, and BAX and Bcl-2 gene expression. Can J Physiol Pharmacol. 2022; 100:12–18.
  61. Younus H. Therapeutic potentials of superoxide dismutase. Int J Health Sci (Qassim).2018; 12: 88-93.
  62. Uylaş MU, Şahin A, Şahintürk V, Alataş İÖ. Quercetin dose affects the fate of hepatic ischemia and reperfusion injury in rats: an experimental research. Int J Surg.2018; 53: 117-121.
  63. Guan LY, Fu PY, Li PD, Li ZN, Liu HY, Xin MG, Li W. Mechanisms of hepatic ischemia-reperfusion injury and protective effects of nitric oxide. World J Gastrointest Surg.2014; 6: 122-128.
  64. Bhatraju P, Crawford J, Hall M, Lang JD Jr. Inhaled nitric oxide: Current clinical concepts. Nitric Oxide.2015; 50: 114-128.
  65. Abdel-Wahab AF, AL-Harizy WM. Propofol Protects against Ischemia/Reperfusion Injury Associated with Reduced Apoptosis in Rat Liver. International Scholarly Research Notices.2013; 2013: 1-8.
  66. Al Mogrampi S, Boumpoureka C, Afaloniati H, Lagou M, Angelopoulou K, Anestakis D, Tampouratzi ZG, Iliadis S, Antoniadis N, Giakoustidis A, Papalois A, Papadopoulos V, Poutahidis T, Giakoustidis D. Inhibition of γδ-TcR or IL17a Reduces T-Cell and Neutrophil Infiltration after Ischemia/Reperfusion Injury in Mouse Liver. J Clin Med. 2023;12: 1751
  67. Minsart C, Liefferinckx C, Lemmers A, Dressen C, Quertinmont E, Leclercq I, Devière J, Moreau R, Gustot T. New insights in acetaminophen toxicity: HMGB1 contributes by itself to amplify hepatocyte necrosis in vitro through the TLR4-TRIF-RIPK3 axis. Sci Rep.2020; 10: 5557.
  68. Dong X, Liu J, Xu Y, Cao H. Role of macrophages in experimental liver injury and repair in mice. Exp Ther Med.2019;17: 3835-3847.
  69. Tan Z, Jiang R, Wang X, Wang Y, Lu L, Liu Q, Zheng SG, Sun B, Ryffel B. RORγt+IL-17+ neutrophils play a critical role in hepatic ischemia-reperfusion injury. J Mol Cell Biol.2013; 5:143-146.
  70. Hirao H, Nakamura K, Kupiec-Weglinski JW. Liver ischemia-reperfusion injury: a new understanding of the role of innate immunity. Nat Rev Gastroenterol Hepatol.2022; 19: 239-256.
  71. Lu TF, Yang TH, Zhong CP, Shen C, Lin WW, Gu GX, Xia Q, Xu N. Dual Effect of Hepatic Macrophages on Liver Ischemia and Reperfusion Injury during Liver Transplantation. Immune Netw.2018;18: 24.
  72. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol.2005; 5: 331-342.
  73. Williams CD, Bajt ML, Sharpe MR, McGill MR, Farhood A, Jaeschke H. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. Toxicol Appl Pharmacol.2014; 275: 122-133.
  74. Huebener P, Pradere JP, Hernandez C, Gwak GY, Caviglia JM, Mu X, Loike JD, Schwabe RF. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J Clin Invest.2015;125: 539-50.
  75. Zhou RR, Zhao SS, Zou MX, Zhang P, Zhang BX, Dai XH, Li N, Liu HB, Wang H, Fan XG. HMGB1 cytoplasmic translocation in patients with acute liver failure. BMC Gastroenterol.2011; 11: 21.
  76. Sun R, Sun S, Zhang Y, Zhou Y, Shan Y, Li X, Fang W. PCV2 Induces Reactive Oxygen Species to Promote Nucleocytoplasmic Translocation of the Viral DNA Binding Protein HMGB1 To Enhance Its Replication. J Virol 2020; 94: e00238-20.
  77. Koh WU, Kim J, Lee J, Song G-W, Hwang GS, Tak E, Song J-G. Remote Ischemic Preconditioning and Diazoxide Protect from Hepatic Ischemic Reperfusion Injury by Inhibiting HMGB1-Induced TLR4/MyD88/NF-κB Signaling. Int. J. Mol. Sci.2019; 20: 5899
  78. Kuramochi M, Izawa T, Pervin M, Bondoc A, Kuwamura M, Yamate J. The kinetics of damage-associated molecular patterns (DAMPs) and toll-like receptors during thioacetamide-induced acute liver injury in rats. Exp Toxicol Pathol.2016; 68: 471-477.
  79. Nastos C, Kalimeris K, Papoutsidakis N, Tasoulis MK, Lykoudis PM, Theodoraki K, Nastou D, Smyrniotis V, Arkadopoulos N. Global consequences of liver ischemia/reperfusion injury. Oxid Med Cell Longev.2014; 2014: 906965.
  80. Wang L, Li N, Lin D, Zang Y. Curcumin protects against hepatic ischemia/reperfusion induced injury through inhibiting TLR4/NF-κB pathway. Oncotarget.2017; 8: 65414-65420.
  81. Mahmoud MF, Gamal S, El-Fayoumi HM. Limonin attenuates hepatocellular injury following liver ischemia and reperfusion in rats via toll-like receptor dependent pathway. Eur J Pharmacol.2014; 740: 676–682.
  82. Zheng Y, Lu H, Huang H. Desflurane Preconditioning Protects Against Renal Ischemia-Reperfusion Injury and Inhibits Inflammation and Oxidative Stress in Rats Through Regulating the Nrf2-Keap1-ARE Signaling Pathway. Drug Des Devel Ther.2020; 14: 1351-1362.
  83. Chen Y, Li T, Tan P, Shi H, Cheng Y, Cai T, Bai J, Du Y, Fu W. Kaempferol from Penthorum chinense Pursh Attenuates Hepatic Ischemia/Reperfusion Injury by Suppressing Oxidative Stress and Inflammation Through Activation of the Nrf2/HO-1 Signaling Pathway. Front Pharmacol.2022; 13: 857015.
  84. Galicia-Moreno M, Lucano-Landeros S, Monroy-Ramirez HC, Silva-Gomez J, Gutierrez-Cuevas J, Santos A, Armendariz-Borunda J. Roles of Nrf2 in Liver Diseases: Molecular, Pharmacological, and Epigenetic Aspects. Antioxidants (Basel).2020; 9: 980.
  85. Jayasuriya R, Dhamodharan U, Ali D, Ganesan K, Xu B, Ramkumar K M. Targeting Nrf2/Keap1 Signaling Pathway by Bioactive Natural Agents: Possible Therapeutic Strategy to Combat Liver Disease. Phytomedicine.2021; 92: 153755.
  86. Xue R, Qiu J, Wei S, Liu M, Wang Q, Wang P, Sha B, Wang H, Shi Y, Zhou J, Rao J, Lu L. Lycopene alleviates hepatic ischemia reperfusion injury via the Nrf2/HO-1 pathway mediated NLRP3 inflammasome inhibition in Kupffer cells. Ann Transl Med.2021; 9: 631.
  87. Elias-Miró M, Jiménez-Castro MB, Rodés J, Peralta C. Current knowledge on oxidative stress in hepatic ischemia/reperfusion. Free Radic Res.2013; 47: 555-568.
  88. Shi Y, Qiu X, Dai M, Zhang X, Jin G. Hyperoside Attenuates Hepatic Ischemia-Reperfusion Injury by Suppressing Oxidative Stress and Inhibiting Apoptosis in Rats. Transplant Proc. 2019;51: 2051-2059.
  89. Datta G, Fuller BJ, Davidson BR. Molecular Mechanisms of Liver Ischemia Reperfusion Injury: Insights from Transgenic Knockout Models. World J. Gastroenterol.2013; 19:1683–1698.
  90. Kraemer R, Lorenzen J, Kabbani M, Herold C, Busche M, Vogt PM, Knobloch K. Acute effects of remote ischemic preconditioning on cutaneous microcirculation—A controlled prospective cohort study. BMC Surg.2011; 11: 32.
  91. Szijarto A, Czigany Z, Turoczi Z, Harsanyi L. Remote ischemic preconditioning—A simple, low-risk method to decrease ischemic reperfusion injury: Models, protocols and mechanistic background. A review. J. Surg. Res.2012; 178: 797–806.
  92. Khanna A, Indracanti N, Chakrabarti R, Indraganti PK. Short-term ex-vivo exposure to hydrogen sulfide enhances murine hematopoietic stem and progenitor cell migration, homing, and proliferation. Cell Adh Migr. 2020; 14: 214-226.
  93. Sameri MJ, Savari F, Hoseinynejad K, Danyaei A, Mard SA. The hepato-protective effect of H2S-modified and non-modified mesenchymal stem cell exosomes on liver ischemia-reperfusion injury in mice: The role of MALAT1. Biochem Biophys Res Commun. 2022; 635: 194-202.
  94. Zhou Y-K, Han C-S, Zhu Z-L, Chen P, Wang Y-M, Lin S, Chen L-J, Zhuang Z-M, Zhou Y-H, Yang R-L. M2 exosomes modified by hydrogen sulfide promoted bone regeneration by moesin mediated endocytosis. Bioactive Materials. 2024; 31: 192–205.
  95. Ruan Z, Liang M, Deng X, Lai M, Shang L, Su X. Exogenous hydrogen sulfide protects fatty liver against ischemia-reperfusion injury by regulating endoplasmic reticulum stress-induced autophagy in macrophage through mediating the class A scavenger receptor pathway in rats. Cell Biol Int. 2019; 44: 306-316.
  96. Andreadou I, Schulz R, Papapetropoulos A, Turan B, Ytrehus K, Ferdinandy P, Daiber A, Di Lisa F. The role of mitochondrial reactive oxygen species, NO and H2S in ischaemia/reperfusion injury and cardioprotection. J Cell Mol Med.2020; 24: 6510-6522.
  97. Xie K, Liu L, Chen J, Liu F. Exosomes derived from human umbilical cord blood mesenchymal stem cells improve hepatic ischemia reperfusion injury via delivering miR-1246. Cell Cycle. 2019; 18: 3491-3501.
  98. Nong K, Wang W, Niu X, Hu B, Ma C, Bai Y, Wu B, Wang Y, Ai K. Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats. Cytotherapy. 2016; 18:1548-1559.
  99. Schorey JS, Bhatnagar S. Exosome function: from tumor immunology to pathogen biology. Traffic. 2008; 9: 871-881.
  100. Liang X, Ding Y, Zhang Y, Tse HF, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014; 23:1045-1059.
  101. Phan J, Kumar P, Hao D, Gao K, Farmer D, Wang A. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. J Extracell Vesicles. 2018; 7: 1522236.
  102. Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med. 2014; 12: 260.
  103. Joo HS, Suh JH, Lee HJ, Bang ES, Lee JM. Current knowledge and Future Perspectives on Mesenchymal Stem Cell-Derived Exosomes as a New Therapeutic Agent. Int J Mol Sci. 2020; 21: 727.
  104. Wang J, Bonacquisti EE, Brown AD, Nguyen J. Boosting the Biogenesis and Secretion of Mesenchymal Stem Cell-Derived Exosomes. Cells. 2020; 9: 660.
  105. Zhang D, Du J, Tang C, Huang Y, Jin H. H2S-induced sulfhydration: Biological function and Detection Methodology. Front. Pharmacol. 2017; 8: 608.
  106. Chu X, Liu D, Li T, Ke H, Xin D, Wang S, Cao Y, Xue H, Wang Z. Hydrogen sulfide-modified extracellular vesicles from mesenchymal stem cells for treatment of hypoxic-ischemic brain injury. J Control Release. 2020; 328: 13-27.
  107. Xu DQ, Gao C, Niu W, Li Y, Wang YX, Gao CJ, Ding Q, Yao LN, Chai W, Li ZC. Sodium hydrosulfide alleviates lung inflammation and cell apoptosis following resuscitated hemorrhagic shock in rats. Acta Pharmacol Sin. 2013; 34:1515-1525.
  108. Török S, Almási N, Valkusz Z, Pósa A, Varga C, Kupai K. Investigation of H2S Donor Treatment on Neutrophil Extracellular Traps in Experimental Colitis. Int J Mol Sci. 2021; 22: 12729.
  109. Xu B, Gan CX, Chen SS, Li JQ, Liu MZ, Guo GH. BMSC-derived exosomes alleviate smoke inhalation lung injury through blockade of the HMGB1/NF-κB pathway. Life Sci. 2020; 257:118042.
  110. Wei W, Guo X, Gu L, Jia J, Yang M, Yuan W, Rong S. Bone marrow mesenchymal stem cell exosomes suppress phosphate-induced aortic calcification via SIRT6-HMGB1 deacetylation. Stem Cell Res Ther. 2021; 12: 235.
  111. Li L, Wang R, Jia Y, Rong R, Xu M, Zhu T. Exosomes Derived From Mesenchymal Stem Cells Ameliorate Renal Ischemic-Reperfusion Injury Through Inhibiting Inflammation and Cell Apoptosis. Front Med (Lausanne). 2019; 6: 269.
  112. Guo C, Liang F, Shah MW, Yan X. Hydrogen sulfide protected gastric epithelial cell from ischemia/reperfusion injury by Keap1 s-sulfhydration, MAPK dependent anti-apoptosis and NF-kappaB dependent anti-inflammation pathway. Eur. J. Pharmacol. 2014; 725: 70–78.
  113. Zhao S, Song T, Gu Y, Zhang Y, Cao S, Miao Q, Zhang X, Chen H, Gao Y, Zhang L, Han Y, Wang H, Pu J, Xie L, Ji Y. Hydrogen Sulfide Alleviates Liver Injury Through the S-Sulfhydrated-Kelch-Like ECH-Associated Protein 1/Nuclear Erythroid 2-Related Factor 2/Low-Density Lipoprotein Receptor-Related Protein 1 Pathway. Hepatology. 2020; 73: 282-302.
  114. Choi EK, Park SH, Lim JA, Hong SW, Kwak KH, Park SS, Lim DG, Jung H. Beneficial Role of Hydrogen Sulfide in Renal Ischemia Reperfusion Injury in Rats. Yonsei Med J.2018; 59: 960-967.
  115. Shen K, Jia Y, Wang X, Zhang J, Liu K, Wang J, Cai W, Li J, Li S, Zhao M, Wang Y, Hu D. Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages. Free Radic Biol Med. 2021; 165: 54-66.