Platelet-Rich Plasma Impact on Healing of Experimentally Induced Full-Thickness Skin Wound in Adult Male Albino Rats: Histological and Immunohistochemical Study

Document Type : Original articles

Authors

Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt

Abstract

Background: Failure to restore normal skin in slowly healed wounds as deep ones is a major health problem induced by deficient therapies. Platelet-rich plasma (PRP) is widely applied in different surgeries, diseases, regenerative medicine and skin youth rejuvenator. Aim of work: Evaluating PRP healing capabilities in experimentally full-thickness skin wound model in adult male rats. Materials & Methods: included 32 male albino rats (~3months,~200g); 8 for PRP preparation and 24 were subjected to full-thickness wound then divided equally into wounded-rat (group-I) and wounded-rat/PRP (group-II). Each was subdivided into two subgroups [Ia, Ib] &[IIa, IIb] according to their sacrifice at days 5 &14. Biochemical [platelet-derived growth factor (PDGF) &transforming growth factor (TGF)-β], histological, immunohistochemical [vascular endothelial growth factor (VEGF), interleukin (IL)-1α &CD-163] and statistical studies were done. Results: Skin PDGF, TGF-β levels and VEGF area-percent were increased in subgroups Ia &IIa versus control specimens and decreased in subgroups Ib &IIb versus Ia &IIa respectively. Subgroup Ia showed lost epidermis, numerous congested blood vessels, inflammatory cell infiltrate and absent skin appendages. In subgroup IIa the epidermis appeared with no skin appendages. Subgroup Ib illustrated epidermis, congested blood vessels, numerous inflammatory cells and no skin appendages. Subgroup IIb revealed apparently normal skin histological structure. Significantly increased IL-1α and non-significantly increased CD-163 were recorded versus control sections in all subgroups except subgroup IIb. Conclusion: PRP could accelerate full-thickness wound healing and prevent scar formation via its anti-inflammatory and angiogenic abilities. besides, it promotes re-epithelialization, keratinocytes proliferation & proper collagen fibers arrangement.

Keywords

Main Subjects


  1. Biggs LC, Kim CS, Miroshnikova YA, Wickström SA. Mechanical forces in the skin: roles in tissue archite cture, stability, and function. J Invest Dermatol. 2020; 140: 284-90.
  2. Coates M, Blanchard S, MacLeod AS. Innate antimicrobial immunity in the skin: a protective barrier against bacteria, viruses, and fungi. PLoS Pathog. 2018; 14:1-7.
  3. Iacopetti I, Perazzi A, Patruno M, Contiero B, Carolo A, Martinello T, Melotti L. Assessment of the quality of the healing process in experimentally induced skin lesions treated with autologous platelet concentrate associated or unassociated with allogeneic mesenchymal stem cells: preliminary results in a large animal model. Front Vet Sci. 2023; 10:1-14.
  4. Gould L, Abadir P, Brem H, Carter M, Conner-Kerr T, Davidson J, DiPietro L, Falanga V, Fife C, Gardner S, Grice E, Harmon J, Hazzard WR, High KP, Houghton P, Jacobson N, Kirsner RS, Kovacs EJ, Margolis D, McFarland Horne F, Reed MJ, Sullivan DH, Thom S, Tomic-Canic M, Walston J, Whitney JA, Williams J, Zieman S, Schmader K. Chronic wound repair and healing in older adults: current status and future research. J Am Geriatr Soc. 2015; 63:427-38.
  5. Nowell CS, Odermatt PD, Azzolin L, Hohnel S, Wagner EF, Fantner GE, Lutolf MP, Barrandon Y, Piccolo S, Radtke F. Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nat Cell Biol. 2016; 18:168-180.
  6. Demidova-Rice TN, Hamblin MR, Herman IM. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care. 2012; 25: 304-314.
  7. Lei X, Cheng L, Yang Y, Pang M, Dong Y, Zhu X, Chen C, Yao Z, Wu G, Cheng B, Forouzanfar T. Co-administration of platelet-rich plasma and small intestinal submucosa is more beneficial than their individual use in promoting acute skin wound healing. Burns Trauma. 2021; 9:1-11
  8. Alves R, Grimalt R. A Review of Platelet-Rich Plasma: History, Biology, Mechanism of Action, and Classification. Skin Appendage Disord. 2018; 4:18-24.
  9. Lee KS. Ultrasound-Guided Platelet-Rich Plasma Treatment: Application and Technique. Semin Musculoskelet Radiol. 2016; 20:422-431.
  10. Collins T, Alexander D, Barkatali B. Platelet-rich plasma: a narrative review. EFORT Open Rev. 2021; 6:225-235.
  11. Dhurat R, Sukesh M. Principles and Methods of Preparation of Platelet-Rich Plasma: A Review and Author's Perspective. J Cutan Aesthet Surg. 2014; 7:189-97.
  12.   Andia I, Rubio-Azpeitia E, Martin JI, Abate M. Current Concepts and Translational Uses of Platelet Rich Plasma Biotechnology’. Biotechnology, InTech, 2015;1-32.
  13. Jain NK, Gulati M. Platelet-rich plasma: a healing virtuoso. Blood Res. 2016; 51:3-5.
  14. Nicoletti G, Saler M, Villani L, Rumolo A, Tresoldi MM, Faga A. Platelet Rich Plasma Enhancement of Skin Regeneration in an ex-vivoHuman Experimental Model. Front Bioeng Biotechnol. 2019; 7:1-10.
  15. Leisi S, Farahpour MR. Effectiveness of topical administration of platelet-rich plasma on the healing of methicillin-resistant Staphylococcus aureus-infected full-thickness wound model. J Plast Reconstr Aesthet Surg. 2023; 77:416-29.
  16. Karina, Samudra MF, Rosadi I, Afini I, Widyastuti T, Sobariah S, Remelia M, Puspitasari RL, Rosliana I, Tunggadewi TI. Combination of the stromal vascular fraction and platelet-rich plasma accelerates the wound healing process: pre-clinical study in a Sprague-Dawley rat model. Stem Cell Investig. 2019; 6:18.
  17. Cavallo C, Roffi A, Grigolo B, Mariani E, Pratelli L, Merli G, Kon E, Marcacci M, Filardo G. Platelet-Rich Plasma: The Choice of Activation Method Affects the Release of Bioactive Molecules. Biomed Res Int. 2016; 2016:1-7.
  18. Anushree U, Punj P, Vasumathi, Bharati S. Phosphorylated chitosan accelerates dermal wound healing in diabetic wistar rats. Glycoconj J. 2023; 40:19-31.
  19. Abdollahi M, Ng TS, Rezaeizadeh A, Aamidor S, Twigg SM, Min D, McLennan SV. Insulin treatment prevents wounding associated changes in tissue and circulating neutrophil MMP-9 and NGAL in diabetic rats. PLoS One. 2017; 12:1-16.
  20. Klabukov I, Yatsenko E, Baranovskii D. The effects of mesenchymal stromal cells and platelet-rich plasma treatments on cutaneous wound healing: ignoring the possibility of adverse events and side effects could compromise study results. Arch Dermatol Res. 2023; 316:35.
  21. Tatar C, Aydin H, Karsidag T, Arikan S, Kabukcuoglu F, Dogan O, Bekem A, Unal A, Tuzun IS. The effects of platelet-rich plasma on wound healing in rats. Int J Clin Exp Med. 2017; 10:7698-7706.
  22. Shahhosseinlou F, Farahpour MR, Sonboli A. Fabrication of novel polysaccharide hybrid nanoliposomes containing citral for targeting MRSA-infected wound healing. J Ind Eng Chem. 2023; 118:187–95.
  23. Abdelmonem M, Shahin NN, Rashed LA, Amin HAA, Shamaa AA, Shaheen AA. Hydrogen sulfide enhances the effectiveness of mesenchymal stem cell therapy in rats with heart failure: In vitro preconditioning versus in vivo co-delivery. Biomed Pharmacother. 2019; 112:1-15.
  24. Suvarna K, Layton C, Bancroft J. The haematoxylins and eosin, Connective and mesenchymal tissue with their stains & Immunohistochemical and immunofluorescent techniques. In Bancroft's Theory and Practice of Histological Techniques (Eighth Edition), Elsevier, 2019, pp: 126-138, 153-175 & 337-394 . eBook ISBN: 9780702068867.
  25. Han Y, Ren J, Bai Y, Pei X, Han Y. Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R. Int J Biochem Cell Biol. 2019;109:59-68.
  26. Elswaidy NR, Abd Ellatif RA, Ibrahim MAA. Ketogenic Diet Enhances Delayed Wound Healing in Immunocompromised Rats: A Histological and Immunohistochemical Study. Egyptian Journal of Histology. 2022; 45:1111-1124.
  27. Melter M, Reinders ME, Sho M, Pal S, Geehan C, Denton MD, Mukhopadhyay D, Briscoe DM. Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood. 2000; 96:3801-3808.
  28. Brown LF, Yeo KT, Berse B, Yeo TK, Senger DR, Dvorak HF, van de Water L. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med. 1992; 176:1375-1379.
  29. Cohen I, Rider P, Vornov E, Tomas M, Tudor C, Wegner M, Brondani L, Freudenberg M, Mittler G, Ferrando-May E, Dinarello CA, Apte RN, Schneider R. IL-1α is a DNA damage sensor linking genotoxic stress signaling to sterile inflammation and innate immunity. Sci Rep. 2015; 5:1-11.
  30. Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity. 2019; 50:778-795.
  31. Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen. 2019; 39:1-16.
  32. Juniantito V, Izawa T, Yuasa T, Ichikawa C, Yano R, Kuwamura M, Yamate J. Immunophenotypical characterization of macrophages in rat bleomycin-induced scleroderma. Vet Pathol. 2013; 50:76-85.
  33. Dalmaijer ES, Nord CL, Astle DE. Statistical power for cluster analysis. BMC Bioinformatics.2022;23: 205-233.
  34. Akbarzadeh S, McKenzie MB, Rahman MM, Cleland H. Allogeneic Platelet-Rich Plasma: Is It Safe and Effective for Wound Repair? Eur Surg Res. 2021; 62:1-9.
  35. Guo SC, Tao SC, Yin WJ, Qi X, Yuan T, Zhang CQ. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics. 2017; 7:81–96.
  36. Chicharro-Alcántara D, Rubio-Zaragoza M, Damiá-Giménez E, Carrillo-Poveda JM, Cuervo-Serrato B, Peláez-Gorrea P, Sopena-Juncosa JJ. Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management. J Funct Biomater. 2018; 9:1-20.
  37. Ozer K, Colak O. Leucocyte- and platelet-rich fibrin as a rescue therapy for small-to-medium-sized complex wounds of the lower extremities. Burns Trauma. 2019; 7: 1-9.
  38. Karayannopoulou M, Psalla D, Kazakos G, Loukopoulos P, Giannakas N, Savvas I, Kritsepi-Konstantinou M, Chantes A, Papazoglou LG. Effect of locally injected autologous platelet-rich plasma on second intention wound healing of acute full-thickness skin defects in dogs. Vet Comp Orthop Traumatol. 2015; 28:172-178.
  39. Xu PC, Xuan M, Cheng B. Effects and mechanism of platelet-rich plasma on military drill injury: a review. Mil Med Res. 2020; 7:1-7.
  40. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev. 2019; 99:665-706.
  41. Martin JM, Zenilman JM, Lazarus GS. Molecular microbiology: new dimensions for cutaneous biology and wound healing. J Invest Dermatol. 2010; 130:38-48. 
  42. Etulain J. Platelets in wound healing and regenerative medicine. Platelets. 2018; 29:556-568.
  43. Xu P, Wu Y, Zhou L, Yang Z, Zhang X, Hu X, Yang J, Wang M, Wang B, Luo G, He W, Cheng B. Platelet-rich plasma accelerates skin wound healing by promoting re-epithelialization. Burns Trauma. 2020; 8:1-14.
  44. Eo H, Lee HJ, Lim Y. Ameliorative effect of dietary genistein on diabetes induced hyper-inflammation and oxidative stress during early stage of wound healing in alloxan induced diabetic mice. Biochem Biophys Res Commun. 2016; 478:1021-1027.
  45. Wynn TA, Vannella KM. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016; 44:450-62.
  46. Dale DC, Boxer L, Liles WC. The phagocytes: neutrophils and monocytes. Blood. 2008; 112:935-945.
  47. Hart J. Inflammation. 1: Its role in the healing of acute wounds. J Wound Care. 2002; 11:205-209.
  48. Rodero MP, Hodgson SS, Hollier B, Combadiere C, Khosrotehrani K. Reduced Il17a expression distinguishes a Ly6c(lo)MHCII(hi) macrophage population promoting wound healing. J Invest Dermatol. 2013; 133:783-792.
  49. Tabas I, Bornfeldt KE. Macrophage Phenotype and Function in Different Stages of Atherosclerosis. Circ Res. 2016; 118:653-667.
  50. Larouche J, Sheoran S, Maruyama K, Martino MM. Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Adv Wound Care (New Rochelle). 2018; 7:209-231.
  51. Ku CW, Yang J, Tan HY, Chan JKY, Lee YH. Decreased Innate Migration of Pro-Inflammatory M1 Macrophages through the Mesothelial Membrane Is Affected by Ceramide Kinase and Ceramide 1-P. Int J Mol Sci. 2022; 23:1-14.
  52. Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Front Physiol. 2018; 9:1-22.
  53. Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L, Duo Y. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 2023; 8:1-35.
  54. Lian Z, Yin X, Li H, Jia L, He X, Yan Y, Liu N, Wan K, Li X, Lin S. Synergistic effect of bone marrow-derived mesenchymal stem cells and platelet-rich plasma in streptozotocin-induced diabetic rats. Ann Dermatol. 2014; 26:1-10.
  55. Marck RE, Gardien KL, Stekelenburg CM, Vehmeijer M, Baas D, Tuinebreijer WE, Breederveld RS, Middelkoop E. The application of platelet-rich plasma in the treatment of deep dermal burns: A randomized, double-blind, intra-patient controlled study. Wound Repair Regen. 2016; 24:712-720.
  56. Pluthero FG, Kahr WHA. The Birth and Death of Platelets in Health and Disease. Physiology (Bethesda). 2018; 33:225-234.
  57. Khalaf AA, Hassanen EI, Zaki AR, Tohamy AF, Ibrahim MA. Histopathological, immunohistochemical, and molecular studies for determination of wound age and vitality in rats. Int Wound J. 2019; 16:1416-1425.
  58. Hua Y, Bergers G. Tumors vs. Chronic Wounds: An Immune Cell's Perspective. Front Immunol. 2019; 10:1-11. 
  59. Daley JM, Brancato SK, Thomay AA, Reichner JS, Albina JE. The phenotype of murine wound macrophages. J Leukoc Biol. 2010; 87:59-67.
  60. Shook B, Xiao E, Kumamoto Y, Iwasaki A, Horsley V. CD301b+ Macrophages Are Essential for Effective Skin Wound Healing. J Invest Dermatol. 2016; 136:1885-1891.
  61. Sawaya AP, Stone RC, Brooks SR, Pastar I, Jozic I, Hasneen K, O'Neill K, Mehdizadeh S, Head CR, Strbo N, Morasso MI, Tomic-Canic M. Deregulated immune cell recruitment orchestrated by FOXM1 impairs human diabetic wound healing. Nat Commun. 2020; 11:1-14.
  62. Archer NK, Jo JH, Lee SK, Kim D, Smith B, Ortines RV, Wang Y, Marchitto MC, Ravipati A, Cai SS, Dillen CA, Liu H, Miller RJ, Ashbaugh AG, Uppal AS, Oyoshi MK, Malhotra N, Hoff S, Garza LA, Kong HH, Segre JA, Geha RS, Miller LS. Injury, dysbiosis, and filaggrin deficiency drive skin inflammation through keratinocyte IL-1α release. J Allergy Clin Immunol. 2019; 143:1-33
  63. Wang X, Bove AM, Simone G, Ma B. Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role. Front Cell Dev Biol. 2020; 8:1-12.
  64. Yu C, Xu ZX, Hao YH, Gao YB, Yao BW, Zhang J, Wang B, Hu ZQ, Peng RY. A novel microcurrent dressing for wound healing in a rat skin defect model. Mil Med Res. 2019; 6:1-9.
  65. Zhang J, Luo Q, Hu Q, Zhang T, Shi J, Kong L, Fu D, Yang C, Zhang Z. An injectable bioactive dressing based on platelet-rich plasma and nanoclay: Sustained release of deferoxamine to accelerate chronic wound healing. Acta Pharm Sin B. 2023; 13:4318-4336.
  66. Zhang X, Yao D, Zhao W, Zhang R, Yu B, Ma G, Li Y, Hao D, Xu FJ. Engineering platelet-rich plasma based dual-network hydrogel as a bioactive wound dressing with potential clinical translational value. Adv Funct Mater. 2021; 31:1-14.
  67. Alhajj M, Goyal A. Physiology, Granulation Tissue. 2022 Oct 24. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 32119289.
  68. Zhang L, Hu C, Xu W, Wu D, Lei S. Advances in wound repair and regeneration: Systematic comparison of cell free fat extract and platelet rich plasma. Front Chem. 2022; 10:1-10.
  69. Morgan NH, Abouelgoud M, Haiba DA, Arakeep HM. Comparative Study on the Effect of Injectable Platelet Rich Plasma versus its Topical Application in the Treatment of Thermal Burn in Adult Male Albino Rat: Histological and Immunohistochemical Study. Egyptian Journal of Histology. 2022; 45:125-135.
  70. Zeng XL, Sun L, Zheng HQ, Wang GL, Du YH, Lv XF, Ma MM, Guan YY. Smooth muscle-specific TMEM16A expression protects against angiotensin II-induced cerebrovascular remodeling via suppressing extracellular matrix deposition. J Mol Cell Cardiol. 2019; 134:131-143.
  71. Yang L, Witten TM, Pidaparti RM. A biomechanical model of wound contraction and scar formation. J Theor Biol. 2013; 332:228-248.
  72. Li Y, Zhang J, Yue J, Gou X, Wu X. Epidermal Stem Cells in Skin Wound Healing. Adv Wound Care (New Rochelle). 2017; 6:297-307.
  73. Díaz-García D, Filipová A, Garza-Veloz I, Martinez-Fierro ML. A Beginner's Introduction to Skin Stem Cells and Wound Healing. Int J Mol Sci. 2021; 22:1-20.
  74. Gong L, Xiao J, Li X, Li Y, Gao X, Xu X. IL-36α Promoted Wound Induced Hair Follicle Neogenesis via Hair Follicle Stem/Progenitor Cell Proliferation. Front Cell Dev Biol. 2020; 8:1-11.
  75. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014; 6:1-36.
  76. Portou MJ, Baker D, Abraham D, Tsui J. The innate immune system, toll-like receptors and dermal wound healing: A review. Vascul Pharmacol. 2015; 71:31-36.
  77. Wu LW, Chen WL, Huang SM, Chan JY. Platelet-derived growth factor-AA is a substantial factor in the ability of adipose-derived stem cells and endothelial progenitor cells to enhance wound healing. FASEB J. 2019; 33:2388-2395.
  78. Weng T, Wu P, Zhang W, Zheng Y, Li Q, Jin R, Chen H, You C, Guo S, Han C, Wang X. Regeneration of skin appendages and nerves: current status and further challenges. J Transl Med. 2020; 18:1-17.