The Effect of Alpha Lipoic Acid on The Cornea of an Experimentally Induced Dry Eye in Adult Male Albino Rat: A Histological and Immunohistochemical Study

Document Type : Original articles

Authors

1 Histology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.

2 Ophthalmology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt

Abstract

Background: Dry eye disease (DE) is an emergent global disease which was aggravated by working from home during the COVID-19. Alpha-Lipoic Acid (ALA) is a natural potent universal antioxidant. Aim: The current study was done to assess the effect of ALA on the cornea of an experimentally induced DE. Methods: Forty adult male albino rats were randomly divided into four main groups: group I (control), group II received 100 mg/kg ALA orally once daily for six weeks, group III(DE) received topical administration of 0.2% Benzalkonium chloride (BAC) solution twice daily for 14 days, group IV (DE-ALA) received BAC and ALA on 15th day of experiment in the same dose and duration as group II and III respectively. Results: DE group showed break up of tear film, apoptotic corneal epithelium, and neovascularization in stroma. Ultrastructurally, corneal epithelial cells showed swollen mitochondria, dilated RER, and depleted surface microplicea as well as attenuated desmosomes in between them. A high significant increase was observed in the mean total corneal thickness, immunoreactivity of MMP-9 & VEGF as well as the number of Ki-67 positive cells. Also, a high significant decrease in the corneal epithelial thickness, mean area percentage of collagen fibers, and the mean goblet cells number in the conjunctiva were noticed. The ameliorative effect of ALA against the histopathological alterations induced by DE was corroborated by current histological, immunohistochemical, and ultrastructural results of DE-ALA group. Conclusion: Oral administration of ALA ameliorates the biochemical, and histopathological changes in the cornea of the induced DE model.
 

Keywords

Main Subjects


  1. Yu Z, Joy S, Mi T, Yazdanpanah G, Burgess K, et al., New, potent, small molecule agonists of tyrosine kinase receptors attenuate dry eye Front Med (Lausanne). 2022;9:937142.doi:10.3389/fmed.2022.937142
  2. Astolfi G, Lorenzini L, Gobbo F, Sarli G, Versura P. Comparison of Trehalose/Hyaluronic Acid (HA) 0.001% Hydrocortisone/HA eyedrops on signs and inflammatory markers in a desiccating model of Dry Eye disease (DE). J Clin Med. 2022;11(6):1518. doi:10.3390/jcm11061518
  3. Chaudhari P, Satarker S, Thomas R, Theruveethi N, Ghate V, et al. Rodent models for dry eye syndrome: Standardization using benzalkonium chloride and scopolamine   Life   Sci.   2023;317:121463. doi:10.1016/j.lfs.2023.121463.
  1. Aziz B and Tawfik C. Prevalence of dry eye disease among healthy Egyptian population. Journal of the Egyptian Ophthalmological Society. 2020:113(4), 133-141. DOI: 10.4103/ejos.ejos_29_20.
  2. Neti N, Prabhasawat P, Chirapapaisan C, Ngowyutagon P. Provocation of dry eye disease symptoms during COVID-19 lockdown. Sci Rep. 2021;11(1):24434. doi: 10.1038/s41598-021-03887-4.
  3. Aragona P, Giannaccare G, Mencucci R, Rubino P, Cantera E, et al., Modern approach to the treatment of dry eye, a complex multifactorial disease: a P.I.C.A.S.S.O. board review. Br J Ophthalmol. 2021;105(4):446-453. doi:10.1136/bjophthalmol-2019-315747.
  4. Kim M, Kim S, Jeon J, Lee H. Impact of lacrimal gland extraction on the contralateral eye in an animal model for dry eye Korean J Ophthalmol. 2022;36(4):318-325. doi:10.3341/kjo.2022.0012.
  5. Huang W, Tourmouzis K, Perry H, Honkanen R, Rigas B. Animal models of dry eye disease: Useful, varied and evolving (Review). Exp Ther Med. 2021;22(6):1394. doi:10.3892/etm.2021.10830.
  6. Thacker M, Sahoo A, Reddy A, Bokara, K, Singh S, et al., Benzalkonium chloride-induced dry eye disease animal models: Current understanding and potential for translational research. Indian J Ophthalmol. 2023;71(4):1256- 1262. doi:10.4103/IJO.IJO.
  7. Zhu J, Inomata T, Shih K,Okumura Y, Fujio K, et al., Application of animal models in interpreting dry eye Front Med (Lausanne). 2022;9:830592. doi:10.3389/fmed.2022.830592
  8. El-Houseiny W, Arisha A, Metwally M, Abdel-Warith A, Younis E. et al., Alpha-lipoic acid suppresses gibberellic acid nephrotoxicity in Nile tilapia (Oreochromis niloticus) via modulating oxidative stress, inflammation,

 

cytokine production, and apoptosis. Pesticide Biochemistry and Physiology. 2023;196: 105598. doi:10.1016/j.pestbp.2023.105598

  1. Roszkowska A, Spinella R, Oliverio G, Postorino E, Signorino et al., Effects of the topical use of the natural antioxidant alpha-Lipoic acid on the ocular surface of diabetic patients with dry eye symptoms. Front Biosci (Landmark Ed). 2022;27(7):202. doi:10.31083/j.fbl2707202.
  2. Tripathi A, Ray A, Mishra S, Bishen S, Mishra H, et al.,Molecular and therapeutic insights of alpha-lipoic acid as a potential molecule for disease prevention. Rev Bras Farmacogn. 2023;33(2):272-287. doi:10.1007/s43450- 023-00370-1.
  3. Talaverón-Rey M, Álvarez-Córdoba M, Villalón-García I, Povea-Cabello S, Suárez-Rivero J, et al., Alpha-lipoic acid supplementation corrects pathological alterations in cellular models of pantothenate kinase-associated neurodegeneration with residual PANK2 expression levels. Orphanet J Rare Dis. 2023;18(1):80. doi:10.1186/s13023-023-0268
  4. Naderi N, Darmishonnejad Z, Tavalaee M, Nasr-Esfahani M. The effect of alpha-lipoic acid on sperm functions in rodent models for male infertility: A systematic review. Life Sci. 2023;323:121383. doi:10.1016/j.lfs.2023.121383
  5. Muz O, Orhan C, Erten F, Tuzcu M, Ozercan et al., A Novel integrated active herbal formulation ameliorates dry eye syndrome by inhibiting inflammation and oxidative stress and enhancing glycosylated phosphoproteins in rats. Pharmaceuticals. 2020; 13: 295. doi:10.3390/ph13100295.
  6. Carpena-Torres C, Pintor J, Pérez de Lara M, Huete-Toral F, Crooke A, et , Optimization of a rabbit dry eye model induced by topical instillation of benzalkonium chloride. Journal of Ophthalmology. 2020; Article ID 7204951, 10 pages. doi.org/10.1155/2020/720495.
  7. Gunes A, Ozmen O, Saygın M, Ascı H, Tok L, et , Lens and cornea lesions

 

of rats fed corn syrup and the protective effects of alpha lipoic acid. Cutan Ocul Toxicol. 2016; 35(1): 31-5. doi: 10.3109/15569527.2015.1004584.

  1. Moustafa N, Abdul-Hamid M, El- Nesr KA, Abukhadra Protective effect of alpha lipoic acid and royal jelly against the side effects of cyclophosphamide in testis of male albino rats. EJH. 2019; 43(2): 539-553. doi: 10.21608/ejh.2019.16643.1167.
  2. Gaertner D, Hallman T, Hankenson F, Batcherder M. Anesthesia and analgesia for laboratory rodents. in: anesthesia and analgesia in laboratory animals. editors Fish R, Brown M, Danneman P, Karas A. San Diego (CA. Boston): Academic Press; 2008:242–243.
  3. Sanyoto D, Asnawati A, Triawanti T. Effect of DHA supplementation on the MDA and SOD levels in protein malnourished rats. journal of physics: conference series. 2019; 1374 (2019) 012036. doi:10.1088/1742- 6596/1374/1/012036.
  4. Hashem Regenerative and antioxidant properties of autologous platelet-rich plasma can reserve the aging process of the cornea in the rat model. Oxidative Medicine and Cellular Longevity. 2020; 2020:4127959. DOI: 10.1155/2020/4127959.
  5. Bancroft J, Layton C. The hematoxylins and eosin. In: Suvarna S, Layton C, Bancroft J, Eds. Bancroft’s Theory and Practice of Histological Techniques, 8th. chapter 10. Philadelphia, USA: Elsevier; 2019:126–138.
  6. Layton C, Bancroft Carbohydrates. In: Suvarna SK, Layton C, Bancroft JD, Eds. Bancroft’s Theory and Practice of Histological Techniques, 8th. chapter
  7. Philadelphia: Churchill Livingstone, Elsevier; 2019:215–239.
  8. Bancroft J, Layton C. Connective and mesenchymal tissues with their stains. In: Suvarna SK, Layton C, Bancroft JD, Eds. Bancroft’s Theory and Practice of Histological Techniques, Churchill Livingstone, Elsevier: Philadelphia.

 

Chapter 11. Philadelphia (USA): Elsevier; 2019:187–214.

  1. Buchwalow I, Böcker W. Working with Antibodies. In: Buchwalow IB, Böcker W, Eds. Immunohistochemistry: Basics and Methods. Chapter 4., Heidelberg, Dordecht, London, New York, Springer; 2010: 31–39.
  2. Hammad A, Sayed-Ahmed M, Abdel Hafez S, Ibrahim A, Khalifa M, et al., Trimetazidine alleviates paclitaxel-induced peripheral neuropathy through modulation of TLR4/p38/NF-κB and klotho protein expression. Chem Biol Interact. 2023 1;376:110446. doi: 10.1016/j.cbi.2023.110446.
  3. Kashef S, Elwan W, Elbakary Rand Laag E, Abo Hassan N. Effect of bone marrow-derived mesenchymal stem cells on psoriasis-like skin inflammation induced by imiquimod in adult male albino rat: a histological and immunohistochemical Journal of Cell and Tissue Research. 2019; 19(2): 6695-67192
  4. Shalaby A, Ibrahim M, Aboregela A. Effect of aspartame on the placenta of adult albino rat. A histological and immunohistochemical study. Ann Anat. 2019;224:133-141. doi: 10.1016/j.aanat.2019.04.007.
  5. Cheville N, Stasko J. Techniques in electron microscopy of animal tissue. Veterinary Pathology Journal. 2014; 51(1): 28-41.
  6. Dawson B and Trapp R. Basic and Clinical Biostatistics. 5th edition. New York: McGraw-Hill Education/Medical. USA.2020: 190-220.
  7. Yu L, Yu C, Dong H, Mu Y, Zhang R, et al., Recent developments about the pathogenesis of dry eye disease: based on immune inflammatory Front Pharmacol. 2021;12:732887. doi:10.3389/fphar.2021.732887.
  8. Bhavsar A, Bhavsar S, Jain S. A review on recent advances in dry eye: Pathogenesis and management. Oman J Ophthalmol. 2011;4(2):50-56. doi:10.4103/0974-620X.83653
  9. Navel V, Sapin V, Henrioux F, Blanchon L, Labbé A, et , Oxidative and

 

antioxidative stress markers in dry eye disease: A systematic review and meta- analysis. Acta Ophthalmol. 2022;100(1):45-57. doi:10.1111/aos.14892

  1. Seen S, Tong L. Dry eye disease and oxidative stress. Acta Ophthalmol. 2018;96(4):e412-e420. doi:10.1111/aos.13526
  2. Yoon H, Jin R, Yoon H, Choi J, Kim Y, et al., Bacillus-derived manganese superoxide dismutase relieves ocular-surface inflammation and damage by reducing oxidative stress and apoptosis in dry Invest Ophthalmol Vis Sci. 2023;64(12):30. doi: 10.1167/iovs.64.12.30.
  3. Liu H, Gambino F, Algenio C, Wu C, Gao Y, et , Inflammation and oxidative stress induced by lipid peroxidation metabolite 4-hydroxynonenal in human corneal epithelial cells. Graefes Arch Clin Exp Ophthalmol. 2020;258(8):1717-1725. doi: 10.1007/s00417-020-04647-2.
  4. Liang Q, Guo R, Tsao J, He Y, Wang C, et , Salidroside alleviates oxidative stress in dry eye disease by activating autophagy through AMPK-Sirt1 pathway. Int Immunopharmacol. 2023;121:110397. doi: 10.1016/j.intimp.2023.110397.
  5. Fan T, Wu S, Jiang Apoptotic effects of norfloxacin on corneal endothelial cells. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(1):77-88. doi:10.1007/s00210-019-01711-5
  6. Bahey, N., Elkelany, M. Structural alterations in the rat cornea and retina induced by topiramate, a histological and immunohistochemical study.EJH, 2023; 46(3): 1376-1392. doi: 10.21608/ejh.2022.137054.1682
  7. Ayilam Ramachandran R, Sanches J, Robertson The roles of autophagy and mitophagy in corneal pathology: current knowledge and future perspectives. Front Med (Lausanne). 2023;10:1064938.doi:10.3389/fmed.2023.1064938
  8. Elabd S, Abo-Elnasr S, Soliman G, Sarhaan N, Tawfik Histological study of the effect of granulocyte colony-stimulating factor on experimentally induced

 

corneal burn in adult male albino rats. Ultrastruct Pathol. 2020;44(1):116-129. doi:10.1080/01913123.2020.1713949

  1. Van Doren Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol. 2015;44-46:224-231. doi:10.1016/j.matbio.2015.01.005.
  2. Baratta R, Schlumpf E, Buono B, DeLorey S, Calkins D. Corneal collagen as a potential therapeutic target in dry eye disease. Surv Ophthalmol. 2022;67(1):60-67. doi:10.1016/j.survophthal.2021.04.006.
  3. Kannan R, Das S, Shetty R, Zhou L, Ghosh A, , Tear proteomics in dry eye disease. Indian          J          Ophthalmol.          2023;71(4):1203-1214. doi:10.4103/IJO.IJO_2851_22
  4. Goktas S, Erdogan E, Sakarya R, Sakarya Y, Yılmaz M, et al., Inhibition of corneal neovascularization by topical and subconjunctival tigecycline. Hindawi Publishing Corporation. J Ophthalmol. 2014; 17:1–6. doi:10.1155/2014/452685.
  5. Yang Y, Zhong J, Cui D, Jensen L. Up-to-date molecular medicine strategies for management of ocular surface neovascularization. Adv Drug Deliv Rev. 2023; 201:115084. doi:10.1016/j.addr.2023.115084
  6. Chan J, Lim G, Lee R, Tong L. A systematic review of tear vascular endothelial growth factor and external eye diseases. International Journal of Molecular Sciences. 2024; 25(3):1369. doi:10.3390/ijms25031369
  7. Chu L, Wang C, Zhou H. Inflammation mechanism and anti-inflammatory therapy of dry eye. Front Med (Lausanne). 2024;11:1307682. doi:10.3389/fmed.2024.1307682
  8. Mohamed O, Nardeen Adel Yacoub, Role of Matrix Metalloproteinase-9 in Diagnosis of Dry Eye. The Medical Journal of Cairo University, 2020; 88(9): 1761-1765. doi: 10.21608/mjcu.2020.116823
  9. Zhang X, M VJ, Qu Y, He X, Ou S, et al., Dry eye management: targeting the

 

ocular surface microenvironment. International Journal of Molecular Sciences. 2017; 18(7):1398. https://doi.org/10.3390/ijms18071398

  1. Wang L, Wang X, Chen Q,Wei Z, Xu X, et al., MicroRNAs of extracellular vesicles derived from mesenchymal stromal cells alleviate inflammation in dry eye disease by targeting the IRAK1/TAB2/NF-κB pathway. Ocul Surf. 2023;28:131-140. doi:10.1016/j.jtos.2023.03.002
  2. Zhang R, Park M, Richardson A,Tedla N, Pandzic E., et al., Dose-dependent benzalkonium chloride toxicity imparts ocular surface epithelial changes with features of dry eye disease. Ocul Surf. 2020;18(1):158-169. doi:10.1016/j.jtos.2019.11.006
  3. Fabiani C, Barabino S, Rashid S, Dana Corneal epithelial proliferation and thickness in a mouse model of dry eye. Exp Eye Res. 2009;89(2):166-171. doi:10.1016/j.exer.2009.03.003
  4. Noh M, Lee D, Kim Y, Kim H, Moon S, et al., APX 115A, a pan NADPH oxidase inhibitor, reduces the degree and incidence rate of dry eye in the STZ induced diabetic rat model. Exp Ther Med. 2023;25(5):194. doi:10.3892/etm.2023.11893
  5. Cui X, Hong J, Wang F, Deng S, Yang Y, et al., Assessment of corneal epithelial thickness in dry eye patients. Optom Vis Sci. 2014;91(12):1446- 1454. doi:10.1097/OPX.0000000000000417
  6. Zemba M, Ionescu M, Pîrvulescu R,Dumitrescu O, Daniel-Constantin B, et , Biomarkers of ocular allergy and dry eye disease. Rom J Ophthalmol. 2023;67(3):250-259. doi:10.22336/rjo.2023.42
  7. Erdélyi B, Kraak R, Zhivov A, Guthoff R, Németh J. In vivo confocal laser scanning microscopy of the cornea in dry eye. Graefes Arch Clin Exp Ophthalmol. 2007;245(1):39-44. doi:10.1007/s00417-006-0375-6
  8. Abou Shousha M, Wang J, Kontadakis G, Feuer W, Canto A, et , Corneal

 

epithelial thickness profile in dry-eye disease. Eye (Lond). 2020;34(5):915- 922. doi:10.1038/s41433-019-0592-y

  1. Liang Q, Liang H, Liu H, Pan Z, Baudouin C, et al., Ocular surface epithelial thickness evaluation in dry eye patients: clinical correlations. J Ophthalmol. 2016;2016:1628469. doi:10.1155/2016/1628469
  2. Kanellopoulos A, Asimellis G. In vivo 3-dimensional corneal epithelial thickness mapping as an indicator of dry eye: preliminary clinical Am J Ophthalmol. 2014;157(1):63-68.e2. doi:10.1016/j.ajo.2013.08.025
  3. Efraim Y, Chen F, Stashko C, Cheong K, Gaylord E, et al., Alterations in corneal biomechanics underlie early stages of autoimmune-mediated dry eye disease. J Autoimmun. 2020;114:102500. doi:10.1016/j.jaut.2020.102500
  4. Li N, Fan Z, Peng X. A histological examination of corneal epithelium after iontophoresis with different riboflavin solutions. Chin Med J (Engl). 2022;135(6):753-755. doi:10.1097/CM9.0000000000001579
  5. Collin SP, Collin The corneal epithelial surface in the eyes of vertebrates: environmental and evolutionary influences on structure and function. J Morphol. 2006;267(3):273-291. doi:10.1002/jmor.10400
  6. Li Z, Wan W, Ji Y, Zheng S, Hu K. Functional and morphological evaluation of the meibomian glands and ocular surface assessment at high Indian J Ophthalmol. 2023;71(4):1483-1487. doi:10.4103/IJO.IJO_2657_22.
  7. Sunshine S, Dhall N, Mona, H, Dana, R, Mun, C, et , Dry Eye Diagnosis and Management. In: AlbertD, Miller J, Azar D, Young L (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. 2021:1-
  8. doi: 0.1007/978-3-319-90495-5_214-1.
  9. Efron N, Jones L, Bron A,Knop E, Arita R, et al., The TFOS international workshop on contact lens discomfort: report of the contact lens interactions with the ocular surface and adnexa Invest Ophthalmol Vis Sci.

 

2013;54(11):TFOS98-TFOS122. doi:10.1167/iovs.13-13187

  1. Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol. 2024;25(1):13-33. doi:10.1038/s41580-023- 00645-4
  2. Gulcin İ. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. 2020;94(3):651-715. doi:10.1007/s00204-020-02689-3
  3. Ajith T. Alpha-lipoic acid: A possible pharmacological agent for treating dry eye disease and retinopathy in diabetes. Clin Exp Pharmacol Physiol. 2020;47(12):1883-1890. doi:10.1111/1440-1681.13373
  4. Li Z, Han Y, Ji Y, Sun K, Chen Y, et , The effect of a-Lipoic acid (ALA) on oxidative stress, inflammation, and apoptosis in high glucose-induced human corneal epithelial cells. Graefes Arch Clin Exp Ophthalmol. 2023;261(3):735- 748. doi:10.1007/s00417-022-05784-6
  5. Andrade A, Salomon T, Behling C,Mahl C, Hackenhaar F, et al. Alpha-lipoic acid restores tear production in an animal model of dry eye. Exp Eye Res. 2014;120:1-9. doi:10.1016/j.exer.2013.12.014
  6. Kim B, Hunter A, Brucker A, Hahn P, Gehrs K, et al., Orally Administered Alpha Lipoic Acid as a Treatment for Geographic Atrophy: A Randomized Clinical Trial. Ophthalmol Retina. 2020;4(9):889-898. doi:10.1016/j.oret.2020.03.019
  7. Najafi N, Mehri S, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of alpha lipoic acid on metabolic syndrome: A comprehensive Phytother Res. 2022;36(6):2300-2323. doi:10.1002/ptr.7406
  8. Zonooz S, Hasani M, Morvaridza M, Pizarro A, Heydari H, et al., Effect of alpha-lipoic acid on oxidative stress parameters: A systematic review and meta-analysis. Journal of Functional Foods.2021;87:104774. doi: 1016/j.jff.2021.104774

 

  1. Skibska B, Skibska A, Gorąca A. The effect of lipoic acid on the content of SOD-1 and TNF-α in rat striated muscle. Postępy Higieny i Medycyny Doświadczalnej. 2022;76(1): 11-15. https://doi.org/10.2478/ahem-2021-0051
  2. Demir U, Demir T, Ilhan N. The protective effect of alpha-lipoic acid against oxidative damage in rabbit conjunctiva and cornea exposed to ultraviolet radiation. Ophthalmologica. 2005;219(1):49-53. doi:10.1159/000081783
  3. Li Y, Liu Y, Shi J, Jia Alpha lipoic acid protects lens from H(2)O(2)-induced cataract by inhibiting apoptosis of lens epithelial cells and inducing activation of anti-oxidative enzymes. Asian Pac J Trop Med. 2013;6(7):548-551. doi:10.1016/S1995-7645(13)60094-2
  4. Sarezky D, Raquib A, Dunaief J, Kim Tolerability in the elderly population of high-dose alpha lipoic acid: a potential antioxidant therapy for the eye. Clin Ophthalmol. 2016;10:1899-1903.doi:10.2147/OPTH.S115900
  5. Chidlow G, Schmidt K, Wood J, Melena J, Osborne N. Alpha-lipoic acid protects the retina against ischemia-reperfusion. Neuropharmacology. 2002;43(6):1015-1025. doi:10.1016/s0028-3908(02)00129-6
  6. Martinelli I, Tomassoni D, Roy P, Di Cesare Mannelli L, Amenta F, et al., Antioxidant properties of alpha-lipoic (thioctic) acid treatment on renal and heart parenchyma in a rat model of hypertension. Antioxidants. 2021; 10(7):1006. https://doi.org/10.3390/antiox10071006
  7. Kocak A, Ural C, Harmanci D,Oktan M, Afagh A, et al., Protective effects of alpha-lipoic acid on bleomycin-induced skin fibrosis through the repression of NADPH Oxidase 4 and TGF-β1/Smad3 signaling pathways. Hum Exp Toxicol. 2022;41:9603271211065975. doi:10.1177/09603271211065975
  8. Di Nicuolo F, Castellani R, De Cicco Nardone A, Barbaro G, Paciullo C, et , Alpha-lipoic acid plays a role in endometriosis: new evidence on inflammasome-mediated interleukin production, Cellular Adhesion and

 

Invasion.                    Molecules.                    2021;                    26(2):288. https://doi.org/10.3390/molecules26020288

  1. Celik A, Bakar-Ates F. Alpha-lipoic acid induced apoptosis of PC3 prostate cancer cells through an alteration on mitochondrial membrane depolarization and MMP-9 mRNA expression. Med Oncol. 2023;40(8):244. doi:10.1007/s12032-023-02113-7
  2. Alvarez-Rivera F, Fernández-Villanueva D, Concheiro A, Alvarez-Lorenzo α-Lipoic acid in soluplus(®) polymeric nanomicelles for ocular treatment of diabetes-associated corneal diseases. J Pharm Sci. 2016;105(9):2855-2863. doi:10.1016/j.xphs.2016.03.006
  3. Elshazly A, Baiomy B, El Sayed Y, Hussein A, Taha N, et , Protective effects of alfa lipoic acid on amiodarone induced hypothyroidism in adult male albino rats (a biochemical, histopathological and immunohistochemical study). The Egyptian Journal of Hospital Medicine, 2023; 90(1): 433-445. doi: 10.21608/ejhm.2023.2