Effect of Adipose Tissue-Derived Stem Cells on Cyclophosphamide-Induced Premature Ovarian Failure in Adult Albino Rat: Structural and Immunohistochemical Study

Document Type : Original articles

Authors

1 Anatomy and Embryology department, Faculty of Medicine, Beni-Suef University

2 Histology department, Faculty of Medicine, Beni-Suef University

3 Anatomy and Embryology department, Faculty of Medicine, Cairo University

Abstract

This study aimed to detect the therapeutic effect of ADSCs on cyclophosphamide-induced POF in rats. forty female albino rats 2 months old (150-200 Kg) have randomly divided into four equal groups, group I (control group): received no medications, group II (cyclophosphamide- treated group): rats received an intra-venous injection (IV) of a single dose of cyclophosphamide (200 mg/kg/ cycle) for two cycles and two weeks after the administration of the cyclophosphamide, they will be sacrificed, group III (cyclophosphamide (200 mg/kg/ cycle) +Stem cell treated group). After 1 week of cyclophosphamide, the animals received 2 million units of ADSCs/ animal I.V. group IV(recovery group) ; the recovery group chemotherapy-treated with cyclophosphamide for two cycles and after 21 days, animals were sacrificed. The Ovarian specimens were examined using Hematoxylin and Eosin, Masson's trichrome, and immunohistochemical (Proliferating Cell Nuclear Antigen broth, B- Cell Lymphoma-2) antibodies. Blood hormone levels (Follicular Stimulating Hormone, Luteinizing Hormone, and Estradiol-2) were measured in all groups. Examination of ovarian sections revealed normal architecture in group I. pathological changes accompanied cyclophosphamide in groups II and IV. Reversal of these changes with the restoration of normal architecture was detected in group III. ADSCs, restored ovarian function and reversed follicular depletion induced by cyclophosphamide. ADSCs, increased expression of PCNA and Bcl2 and lowered collagen fibers expression, reversing the harmful effects of cyclophosphamide. In Conclusion: ADSCs ameliorated cyclophosphamide-induced premature ovarian failure in rats. So, it might be a promising strategy in fighting chemotherapy induced-premature ovarian failure.

Keywords

Main Subjects


  1. Melekoglu, R., Ciftci, O., Eraslan, S., Cetin, A. and Basak, N. (2018). Beneficial effects of curcumin and capsaicin on cyclophosphamide-induced premature ovarian failure in a rat model. Journal of ovarian research, 11, 33.
  2. Sheikhansari, G., Aghebati-Maleki, L., Nouri, M., Jadidi-Niaragh, F. and Yousefi, M. (2018). Current approaches for the treatment of premature ovarian failure with stem cell therapy. Biomedicine & Pharmacotherapy, 102, 254-262.
  3. Baylis, F. and McLeod, C. (2007): The stem cell debate continues: the buying and selling of eggs for research. J Med Ethics, 33, 726-731.
  4. Frese, L., Dijkman, P. E. and Hoerstrup, S. P. (2016): Adipose Tissue-Derived Stem Cells in Regenerative Medicine. Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie, 43, 268-274.
  5. Cheng, K.-H., Kuo, T.-L., Kuo, K.-K. and Hsiao, C.-C. (2011): Human adipose-derived stem cells: Isolation, characterization and current application in regeneration medicine. Genomic Medicine, Biomarkers, and Health Sciences, 3, 53-62.
  6. Yener, N. A., Sinanoglu, O., Ilter, E., Celik, A., Sezgin, G., Midi, A., Deveci, U. and Aksungar, F. (2013). Effects of spirulina on cyclophosphamide-induced ovarian toxicity in rats: biochemical and histomorphometric evaluation of the ovary. Biochem Res Int, 2013, 764262.
  7. Sun, M., Wang, S., Li, Y., Yu, L., Gu, F., Wang, C. and Yao, Y. (2013). Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem Cell Res Ther, 4, 80.
  8. Knauff, E. A., Eijkemans, M. J., Lambalk, C. B., ten Kate-Booij, M. J., Hoek, A., Beerendonk, C. C., Laven, J. S., Goverde, A. J., Broekmans, F. J., Themmen, A. P., de Jong, F. H. and Fauser, B. C. (2009). Anti-Mullerian hormone, inhibin B, and antral follicle count in young women with ovarian failure. J Clin Endocrinol Metab, 94, 786-792.
  9. Ngoc, P. K., Phuc, P. V., Nhung, T. H., Thuy, D. T. and Nguyet, N. T. (2011). Improving the efficacy of type 1 diabetes therapy by transplantation of immunoisolated insulin-producing cells. Hum Cell, 24, 86-95
  10. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A. and Verfaillie, C. M. (2002): Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41-49.
  11. Esmail, M., Anwar, S., Kandeil, M., El-Zanaty, A. M. and Abdel-Gabbar, M. (2021): Effect of Nigella sativa, atorvastatin, or L-Carnitine on high fat diet-induced obesity in adult male Albino rats. Biomedicine & Pharmacotherapy, 141, 111818.
  12. Bancroft, J. D., & Gamble, M. (Eds.). (2018): Theory and practice of histological techniques. Elsevier health sciences.
  13. Kerr, J. B., Duckett, R., Myers, M., Britt, K. L., Mladenovska, T. and Findlay, J. K. (2006): Quantification of healthy follicles in the neonatal and adult mouse ovary: evidence for maintenance of primordial follicle supply. Reproduction, 132, 95-109.
  14. García-Sáez, A. J. (2012): The secrets of the Bcl-2 family. Cell Death Differ, 19, 1733-1740.
  15. Deans, A. J. and West, S. C. (2011): DNA interstrand crosslink repair and cancer. Nature reviews. Cancer, 11, 467-480.
  16. Pascuali, N., Scotti, L., Di Pietro, M., Oubiña, G., Bas, D., May, M., Gómez Muñoz, A., Cuasnicú, P. S., Cohen, D. J., Tesone, M., Abramovich, D. and Parborell, F. (2018b). Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure. Human Reproduction, 33, 844-859.
  17. Mutlu, M. F. and Erdem, A. (2012). Evaluation of ovarian reserve in infertile patients. Journal of the Turkish German Gynecological Association, 13, 196-203.
  18. Torino, F., Barnabei, A., De Vecchis, L., Appetecchia, M., Strigari, L. and Corsello, S. M. (2012). Recognizing menopause in women with amenorrhea induced by cytotoxic chemotherapy for endocrine-responsive early breast cancer. Endocr Relat Cancer, 19, R21-33.
  19. Messinis, I. E. (2006). Ovarian feedback, mechanism of action and possible clinical implications. Human reproduction update, 12, 557-571.
  20. De Vos, M., Smitz, J. and Woodruff, T. K. (2014): Fertility preservation in women with cancer. Lancet, 384, 1302-1310.
  21. Emadi, A., Holtzman, N. G., Wieduwilt, M. J. and Karp, J. E. (2017): Chemotherapeutic Agents for Treatment of AML and ALL. Acute Leukemia: An Illustrated Guide to Diagnosis and Treatment, 279.
  22. Chen, L., Xiong, X., Hou, X., Wei, H., Zhai, J., Xia, T., Gong, X., Gao, S., Feng, G. and Tao, X. (2019): Wuzhi capsule regulates chloroacetaldehyde pharmacokinetics behaviour and alleviates high‐dose cyclophosphamide‐induced nephrotoxicity and neurotoxicity in rats. Basic & clinical pharmacology & toxicology, 125, 142-151.
  23. Lopes, F., Smith, R., Anderson, R. A. and Spears, N. (2014). Docetaxel induces moderate ovarian toxicity in mice, primarily affecting granulosa cells of early growing follicles. MHR: Basic science of reproductive medicine, 20, 948-959.
  24. Meirow, D., Biederman, H., Anderson, R. A. and Wallace, W. H. (2010). Toxicity of chemotherapy and radiation on female reproduction. Clin Obstet Gynecol, 53, 727-739.
  25. Desmeules, P. and Devine, P. J. (2005): Characterizing the Ovotoxicity of Cyclophosphamide Metabolites on Cultured Mouse Ovaries. Toxicological Sciences, 90, 500-509.
  26. Fouad, H., Sabry, D., Elsetohy, K. and Fathy, N. (2016): Therapeutic efficacy of amniotic membrane stem cells and adipose tissue stem cells in rats with chemically induced ovarian failure. Journal of Advanced Research, 7, 233-241.
  27. Xiao, G.-Y., Liu, I. H., Cheng, C.-C., Chang, C.-C., Lee, Y.-H., Cheng, W. T.-K. and Wu, S.-C. (2014). Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy. PLoS One,
  28. Bahmanpour, S., Moradiyan, E., Dehghani, F. and Zarei-fard, N. (2020): Chemoprotective effects of plasma derived from mice of different ages and genders on ovarian failure after cyclophosphamide treatment. Journal of ovarian research, 13, 138.
  29. Chen, X.-Y., Xia, H.-X., Guan, H.-Y., Li, B. and Zhang, W. (2016): Follicle Loss and Apoptosis in Cyclophosphamide-Treated Mice: What's the Matter? Int J Mol Sci, 17, 836.
  30. Sonigo, C., Beau, I., Binart, N. and Grynberg, M. (2019). The Impact of Chemotherapy on the Ovaries: Molecular Aspects and the Prevention of Ovarian Damage. Int J Mol Sci, 20, 5342.
  31. Bukovsky, A. and Caudle, M. R. (2012): Immunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment, and a clinical trial. Reprod Biol Endocrinol, 10, 97.
  32. Hao, X., Anastácio, A., Liu, K. and Rodriguez-Wallberg, K. A. (2019): Ovarian Follicle Depletion Induced by Chemotherapy and the Investigational Stages of Potential Fertility-Protective Treatments-A Review. Int J Mol Sci, 20, 4720.
  33. Meirow, D., Dor, J., Kaufman, B., Shrim, A., Rabinovici, J., Schiff, E., Raanani, H., Levron, J. and Fridman, E. (2007): Cortical fibrosis and blood-vessels damage in human ovaries exposed to chemotherapy. Potential mechanisms of ovarian injury. Hum Reprod, 22, 1626-1633.
  34. Petrillo, S. K., Desmeules, P., Truong, T.-Q. and Devine, P. J. (2011). Detection of DNA damage in oocytes of small ovarian follicles following phosphoramide mustard exposures of cultured rodent ovaries in vitro. Toxicology and Applied Pharmacology, 253, 94-102.
  35. Raz, A., Fisch, B., Okon, E., Feldberg, D., Nitke, S., Raanani, H. and Abir, R. (2002). Possible Direct Cytoxicity Effects of Cyclophosphamide on Cultured Human Follicles: An Electron Microscopy Study. Journal of Assisted Reproduction and Genetics, 19, 500-506.
  36. Tsai-Turton, M., Luong, B. T., Tan, Y. and Luderer, U. (2007). Cyclophosphamide-Induced Apoptosis in COV434 Human Granulosa Cells Involves Oxidative Stress and Glutathione Depletion. Toxicological Sciences, 98, 216-230.
  37. Cui, L., Bao, H., Liu, Z., Man, X., Liu, H., Hou, Y., Luo, Q., Wang, S., Fu, Q. and Zhang, H. (2020): hUMSCs regulate the differentiation of ovarian stromal cells via TGF-β(1)/Smad3 signaling pathway to inhibit ovarian fibrosis to repair ovarian function in POI rats. Stem Cell Res Ther, 11, 386-386.
  38. Delkhosh, A., Delashoub, M., Tehrani, A. A., Bahrami, A. M., Niazi, V., Shoorei, H., Banimohammad, M., Kalarestaghi, H., Shokoohi, M., Agabalazadeh, A. and Mohaqiq, M. (2019): Upregulation of FSHR and PCNA by administration of coenzyme Q10 on cyclophosphamide-induced premature ovarian failure in a mouse model. Journal of Biochemical and Molecular Toxicology, 33, e22398.
  39. Majdi Seghinsara, A., Shoorei, H., Hassanzadeh Taheri, M. M., Khaki, A., Shokoohi, M., Tahmasebi, M., Khaki, A. A., Eyni, H., Ghorbani, S., Riahi Rad, K. H., Kalarestaghi, H. and Roshangar, L. (2019). Panax ginseng Extract Improves Follicular Development after Mouse Preantral Follicle 3D Culture. Cell J, 21, 210-219.
  40. D'Andrea, M. R., Lawrence, D., Nagele, R. G., Wang, C. Y. and Damiano, B. P. (2008): PCNA indexing as a preclinical immunohistochemical biomarker for testicular toxicity. Biotech Histochem, 83, 211-220.
  41. De Vos, M., Devroey, P. and Fauser, B. C. J. M. (2010): Primary ovarian insufficiency. The Lancet, 376, 911-921.
  42. Khorwal, G., Chauhan, R. and Nagar, M. (2017). Effect of cyclophosphamide on liver in albino rats: A comparative dose dependent histomorphological study. International Journal of Biomedical and Advance Research, 8, 102-107.
  43. Shaibah, H. S., Elsify, A.-E. K., Medhat, T. M., Rezk, H. M. and El-Sherbiny, M. (2016). Histopathological and immunohistochemical study of the protective effect of triptorelin on the neurocytes of the hippocampus and the cerebral cortex of male albino rats after short-term exposure to cyclophosphamide. Journal of Microscopy and Ultrastructure, 4, 123-132.
  44. Bashandy, M. A. and Zedan, O. I. (2020): Role of Alpha Lipoic Acid on Cyclophosphamide Induced Cardiotoxicity in Adult Male Albino Rat: Histological Study. Egyptian Journal of Histology, 42, 888-899.
  45. Aladaileh, S. H., Abukhalil, M. H., Saghir, S. A. M., Hanieh, H., Alfwuaires, M. A., Almaiman, A. A., Bin-Jumah, M. and Mahmoud, A. M. (2019): Galangin activates Nrf2 signaling and attenuates oxidative damage, inflammation, and apoptosis in a rat model of cyclophosphamide-induced hepatotoxicity. Biomolecules, 9, 346.
  46. Frese, L., Dijkman, P. E. and Hoerstrup, S. P. (2016): Adipose tissue-derived stem cells in regenerative medicine. Transfusion Medicine and Hemotherapy, 43, 268-274.
  47. Zhang, T., Zhang, M., Fang, X., Zhu, F., Xia, X., Wang, X. and Wang, S. (2019). [Effect of adipose-derived mesenchymal stem cell transplantation on cyclophosphamide-induced ovarian damage in rats]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 44, 731-740.
  48. Su, J., Ding, L., Cheng, J., Yang, J., Li, X. a., Yan, G., Sun, H., Dai, J. and Hu, Y. (2016). Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency. Human Reproduction, 31, 1075-1086.
  49. Takehara, Y., Yabuuchi, A., Ezoe, K., Kuroda, T., Yamadera, R., Sano, C., Murata, N., Aida, T., Nakama, K., Aono, F., Aoyama, N., Kato, K. and Kato, O. (2013). The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Lab Invest, 93, 181-193.
  50. Zhang, H., Luo, Q., Lu, X., Yin, N., Zhou, D., Zhang, L., Zhao, W., Wang, D., Du, P., Hou, Y., Zhang, Y. and Yuan, W. (2018). Effects of hPMSCs on granulosa cell apoptosis and AMH expression and their role in the restoration of ovary function in premature ovarian failure mice. Stem Cell Res Ther, 9, 20-20.
  51. Abd-Allah, S. H., Shalaby, S. M., Pasha, H. F., El-Shal, A. S., Raafat, N., Shabrawy, S. M., Awad, H. A., Amer, M. G., Gharib, M. A., El Gendy, E. A., Raslan, A. A. and El-Kelawy, H. M. (2013): Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits. Cytotherapy, 15, 64-75.
  52. Bukovsky, A., Caudle, M. R., Svetlikova, M. and Upadhyaya, N. B. (2004): Origin of germ cells and formation of new primary follicles in adult human ovaries. Reprod Biol Endocrinol, 2, 20.
  53. Tan, O. L. and Fleming, J. S. (2004). Proliferating cell nuclear antigen immunoreactivity in the ovarian surface epithelium of mice of varying ages and total lifetime ovulation number following ovulation. Biol Reprod, 71, 1501-1507.
  54. Tomanek, M. and Chronowska, E. (2006). Immunohistochemical localization of proliferating cell nuclear antigen (PCNA) in the pig ovary. Folia Histochem Cytobiol, 44, 269-274.
  55. Zhang, H., Jiang, X., Zhang, Y., Xu, B., Hua, J., Ma, T., Zheng, W., Sun, R., Shen, W. and Cooke, H. J. (2014). microRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries. Reproduction, 148, 43-54.
  56. Xu, B., Hua, J., Zhang, Y., Jiang, X., Zhang, H., Ma, T., Zheng, W., Sun, R., Shen, W. and Sha, J. (2011). Proliferating cell nuclear antigen (PCNA) regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries. PLoS One,
  57. Moldovan, G.-L., Pfander, B. and Jentsch, S. (2007). PCNA, the maestro of the replication fork. Cell, 129, 665-679.
  58. Bukovsky, A., Gupta, S. K., Virant-Klun, I., Upadhyaya, N. B., Copas, P., Van Meter, S. E., Svetlikova, M., Ayala, M. E. and Dominguez, R. (2008): Study origin of germ cells and formation of new primary follicles in adult human and rat ovaries. In: Germline Stem Cells, Springer, pp. 233-265.
  59. Dixon, D., Alison, R., Bach, U., Colman, K., Foley, G. L., Harleman, J. H., Haworth, R., Herbert, R., Heuser, A. and Long, G. (2014): Nonproliferative and proliferative lesions of the rat and mouse female reproductive system. Journal of Toxicologic Pathology, 27, 1S.